Package com.ibm.icu.text

Source Code of com.ibm.icu.text.BreakDictionary

/*
*******************************************************************************
* Copyright (C) 1996-2012, International Business Machines Corporation and    *
* others. All Rights Reserved.                                                *
*******************************************************************************
*/
package com.ibm.icu.text;

import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import com.ibm.icu.util.CompactByteArray;

/**
* This is the class that represents the list of known words used by DictionaryBasedBreakIterator. The conceptual data structure used here
* is a trie: there is a node hanging off the root node for every letter that can start a word. Each of these nodes has a node hanging off
* of it for every letter that can be the second letter of a word if this node is the first letter, and so on. The trie is represented as a
* two-dimensional array that can be treated as a table of state transitions. Indexes are used to compress this array, taking advantage of
* the fact that this array will always be very sparse.
*/
@SuppressWarnings("deprecation")
class BreakDictionary {
  //=================================================================================
  // testing and debugging
  //=================================================================================

  //    public static void main(String... args) {
  //        String inFile = args[0];
  //        String outFile = args.length >= 2 ? args[1] : null;
  //        try {
  //            writeToFile(inFile, outFile);
  //        } catch (Exception e) {
  //            e.printStackTrace();
  //        }
  //    }

  ///CLOVER:OFF
  static void writeToFile(final String inFile, final String outFile) throws FileNotFoundException, UnsupportedEncodingException,
      IOException {

    BreakDictionary dictionary = new BreakDictionary(new FileInputStream(inFile));

    PrintWriter out = null;

    if (outFile != null) {
      out = new PrintWriter(new OutputStreamWriter(new FileOutputStream(outFile), "UnicodeLittle"));
    }

    dictionary.printWordList("", 0, out);

    if (out != null) {
      out.close();
    }
  }

  ///CLOVER:ON

  ///CLOVER:OFF
  /* public */void printWordList(final String partialWord, final int state, final PrintWriter out) throws IOException {
    if (state == 0xFFFF) {
      System.out.println(partialWord);
      if (out != null) {
        out.println(partialWord);
      }
    } else {
      for (int i = 0; i < numCols; i++) {
        int newState = (at(state, i)) & 0xFFFF;

        if (newState != 0) {
          char newChar = reverseColumnMap[i];
          String newPartialWord = partialWord;

          if (newChar != 0) {
            newPartialWord += newChar;
          }

          printWordList(newPartialWord, newState, out);
        }
      }
    }
  }

  ///CLOVER:ON

  /**
   * A map used to go from column numbers to characters. Used only for debugging right now.
   */
  private char[] reverseColumnMap = null;

  //=================================================================================
  // data members
  //=================================================================================

  /**
   * Maps from characters to column numbers. The main use of this is to avoid making room in the array for empty columns.
   */
  private CompactByteArray columnMap = null;

  /**
   * The number of actual columns in the table
   */
  private int numCols;

  /*
   * Columns are organized into groups of 32.  This says how many
   * column groups.  (We could calculate this, but we store the
   * value to avoid having to repeatedly calculate it.)
   */
  //private int numColGroups;

  /**
   * The actual compressed state table. Each conceptual row represents a state, and the cells in it contain the row numbers of the states
   * to transition to for each possible letter. 0 is used to indicate an illegal combination of letters (i.e., the error state). The table
   * is compressed by eliminating all the unpopulated (i.e., zero) cells. Multiple conceptual rows can then be doubled up in a single
   * physical row by sliding them up and possibly shifting them to one side or the other so the populated cells don't collide. Indexes are
   * used to identify unpopulated cells and to locate populated cells.
   */
  private short[] table = null;

  /**
   * This index maps logical row numbers to physical row numbers
   */
  private short[] rowIndex = null;

  /**
   * A bitmap is used to tell which cells in the comceptual table are populated. This array contains all the unique bit combinations in
   * that bitmap. If the table is more than 32 columns wide, successive entries in this array are used for a single row.
   */
  private int[] rowIndexFlags = null;

  /**
   * This index maps from a logical row number into the bitmap table above. (This keeps us from storing duplicate bitmap combinations.)
   * Since there are a lot of rows with only one populated cell, instead of wasting space in the bitmap table, we just store a negative
   * number in this index for rows with one populated cell. The absolute value of that number is the column number of the populated cell.
   */
  private short[] rowIndexFlagsIndex = null;

  /**
   * For each logical row, this index contains a constant that is added to the logical column number to get the physical column number
   */
  private byte[] rowIndexShifts = null;

  //=================================================================================
  // deserialization
  //=================================================================================

  /* public */BreakDictionary(final InputStream dictionaryStream) throws IOException {
    readDictionaryFile(new DataInputStream(dictionaryStream));
  }

  /* public */void readDictionaryFile(final DataInputStream in) throws IOException {
    int l;

    // read in the version number (right now we just ignore it)
    in.readInt();

    // read in the column map (this is serialized in its internal form:
    // an index array followed by a data array)
    l = in.readInt();
    char[] temp = new char[l];
    for (int i = 0; i < temp.length; i++)
      temp[i] = (char) in.readShort();
    l = in.readInt();
    byte[] temp2 = new byte[l];
    for (int i = 0; i < temp2.length; i++)
      temp2[i] = in.readByte();
    columnMap = new CompactByteArray(temp, temp2);

    // read in numCols and numColGroups
    numCols = in.readInt();
    /*numColGroups = */in.readInt();

    // read in the row-number index
    l = in.readInt();
    rowIndex = new short[l];
    for (int i = 0; i < rowIndex.length; i++)
      rowIndex[i] = in.readShort();

    // load in the populated-cells bitmap: index first, then bitmap list
    l = in.readInt();
    rowIndexFlagsIndex = new short[l];
    for (int i = 0; i < rowIndexFlagsIndex.length; i++)
      rowIndexFlagsIndex[i] = in.readShort();
    l = in.readInt();
    rowIndexFlags = new int[l];
    for (int i = 0; i < rowIndexFlags.length; i++)
      rowIndexFlags[i] = in.readInt();

    // load in the row-shift index
    l = in.readInt();
    rowIndexShifts = new byte[l];
    for (int i = 0; i < rowIndexShifts.length; i++)
      rowIndexShifts[i] = in.readByte();

    // finally, load in the actual state table
    l = in.readInt();
    table = new short[l];
    for (int i = 0; i < table.length; i++)
      table[i] = in.readShort();

    // this data structure is only necessary for testing and debugging purposes
    reverseColumnMap = new char[numCols];
    for (char c = 0; c < 0xffff; c++) {
      int col = columnMap.elementAt(c);
      if (col != 0) {
        reverseColumnMap[col] = c;
      }
    }

    // close the stream
    in.close();
  }

  //=================================================================================
  // access to the words
  //=================================================================================

  /**
   * Uses the column map to map the character to a column number, then passes the row and column number to the other version of at()
   *
   * @param row
   *            The current state
   * @param ch
   *            The character whose column we're interested in
   * @return The new state to transition to
   */
  /* public */final short at(final int row, final char ch) {
    int col = columnMap.elementAt(ch);
    return at(row, col);
  }

  /**
   * Returns the value in the cell with the specified (logical) row and column numbers. In DictionaryBasedBreakIterator, the row number is
   * a state number, the column number is an input, and the return value is the row number of the new state to transition to. (0 is the
   * "error" state, and -1 is the "end of word" state in a dictionary)
   *
   * @param row
   *            The row number of the current state
   * @param col
   *            The column number of the input character (0 means "not a dictionary character")
   * @return The row number of the new state to transition to
   */
  /* public */final short at(final int row, final int col) {
    if (cellIsPopulated(row, col)) {
      // we map from logical to physical row number by looking up the
      // mapping in rowIndex; we map from logical column number to
      // physical column number by looking up a shift value for this
      // logical row and offsetting the logical column number by
      // the shift amount.  Then we can use internalAt() to actually
      // get the value out of the table.
      return internalAt(rowIndex[row], col + rowIndexShifts[row]);
    } else {
      return 0;
    }
  }

  /**
   * Given (logical) row and column numbers, returns true if the cell in that position is populated
   */
  private final boolean cellIsPopulated(final int row, final int col) {
    // look up the entry in the bitmap index for the specified row.
    // If it's a negative number, it's the column number of the only
    // populated cell in the row
    if (rowIndexFlagsIndex[row] < 0) {
      return col == -rowIndexFlagsIndex[row];
    }

    // if it's a positive number, it's the offset of an entry in the bitmap
    // list.  If the table is more than 32 columns wide, the bitmap is stored
    // successive entries in the bitmap list, so we have to divide the column
    // number by 32 and offset the number we got out of the index by the result.
    // Once we have the appropriate piece of the bitmap, test the appropriate
    // bit and return the result.
    else {
      int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
      return (flags & (1 << (col & 0x1f))) != 0;
    }
  }

  /**
   * Implementation of at() when we know the specified cell is populated.
   *
   * @param row
   *            The PHYSICAL row number of the cell
   * @param col
   *            The PHYSICAL column number of the cell
   * @return The value stored in the cell
   */
  private final short internalAt(final int row, final int col) {
    // the table is a one-dimensional array, so this just does the math necessary
    // to treat it as a two-dimensional array (we don't just use a two-dimensional
    // array because two-dimensional arrays are inefficient in Java)
    return table[row * numCols + col];
  }
}
TOP

Related Classes of com.ibm.icu.text.BreakDictionary

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.