Package com.esotericsoftware.spine

Source Code of com.esotericsoftware.spine.Animation$FlipYTimeline

/******************************************************************************
* Spine Runtimes Software License
* Version 2.1
*
* Copyright (c) 2013, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable and
* non-transferable license to install, execute and perform the Spine Runtimes
* Software (the "Software") solely for internal use. Without the written
* permission of Esoteric Software (typically granted by licensing Spine), you
* may not (a) modify, translate, adapt or otherwise create derivative works,
* improvements of the Software or develop new applications using the Software
* or (b) remove, delete, alter or obscure any trademarks or any copyright,
* trademark, patent or other intellectual property or proprietary rights
* notices on or in the Software, including any copy thereof. Redistributions
* in binary or source form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/

package com.esotericsoftware.spine;

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.FloatArray;
import com.esotericsoftware.spine.attachments.Attachment;

public class Animation {
  final String name;
  private final Array<Timeline> timelines;
  private float duration;

  public Animation (String name, Array<Timeline> timelines, float duration) {
    if (name == null) throw new IllegalArgumentException("name cannot be null.");
    if (timelines == null) throw new IllegalArgumentException("timelines cannot be null.");
    this.name = name;
    this.timelines = timelines;
    this.duration = duration;
  }

  public Array<Timeline> getTimelines () {
    return timelines;
  }

  /** Returns the duration of the animation in seconds. */
  public float getDuration () {
    return duration;
  }

  public void setDuration (float duration) {
    this.duration = duration;
  }

  /** Poses the skeleton at the specified time for this animation.
   * @param lastTime The last time the animation was applied.
   * @param events Any triggered events are added. */
  public void apply (Skeleton skeleton, float lastTime, float time, boolean loop, Array<Event> events) {
    if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");

    if (loop && duration != 0) {
      time %= duration;
      lastTime %= duration;
    }

    Array<Timeline> timelines = this.timelines;
    for (int i = 0, n = timelines.size; i < n; i++)
      timelines.get(i).apply(skeleton, lastTime, time, events, 1);
  }

  /** Poses the skeleton at the specified time for this animation mixed with the current pose.
   * @param lastTime The last time the animation was applied.
   * @param events Any triggered events are added.
   * @param alpha The amount of this animation that affects the current pose. */
  public void mix (Skeleton skeleton, float lastTime, float time, boolean loop, Array<Event> events, float alpha) {
    if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");

    if (loop && duration != 0) {
      time %= duration;
      lastTime %= duration;
    }

    Array<Timeline> timelines = this.timelines;
    for (int i = 0, n = timelines.size; i < n; i++)
      timelines.get(i).apply(skeleton, lastTime, time, events, alpha);
  }

  public String getName () {
    return name;
  }

  public String toString () {
    return name;
  }

  /** @param target After the first and before the last value.
   * @return index of first value greater than the target. */
  static int binarySearch (float[] values, float target, int step) {
    int low = 0;
    int high = values.length / step - 2;
    if (high == 0) return step;
    int current = high >>> 1;
    while (true) {
      if (values[(current + 1) * step] <= target)
        low = current + 1;
      else
        high = current;
      if (low == high) return (low + 1) * step;
      current = (low + high) >>> 1;
    }
  }

  /** @param target After the first and before the last value.
   * @return index of first value greater than the target. */
  static int binarySearch (float[] values, float target) {
    int low = 0;
    int high = values.length - 2;
    if (high == 0) return 1;
    int current = high >>> 1;
    while (true) {
      if (values[current + 1] <= target)
        low = current + 1;
      else
        high = current;
      if (low == high) return low + 1;
      current = (low + high) >>> 1;
    }
  }

  static int linearSearch (float[] values, float target, int step) {
    for (int i = 0, last = values.length - step; i <= last; i += step)
      if (values[i] > target) return i;
    return -1;
  }

  static public interface Timeline {
    /** Sets the value(s) for the specified time.
     * @param events May be null to not collect fired events. */
    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha);
  }

  /** Base class for frames that use an interpolation bezier curve. */
  abstract static public class CurveTimeline implements Timeline {
    static public final float LINEAR = 0, STEPPED = 1, BEZIER = 2;
    static private final int BEZIER_SEGMENTS = 10, BEZIER_SIZE = BEZIER_SEGMENTS * 2 - 1;

    private final float[] curves; // type, x, y, ...

    public CurveTimeline (int frameCount) {
      if (frameCount <= 0) throw new IllegalArgumentException("frameCount must be > 0: " + frameCount);
      curves = new float[(frameCount - 1) * BEZIER_SIZE];
    }

    public int getFrameCount () {
      return curves.length / BEZIER_SIZE + 1;
    }

    public void setLinear (int frameIndex) {
      curves[frameIndex * BEZIER_SIZE] = LINEAR;
    }

    public void setStepped (int frameIndex) {
      curves[frameIndex * BEZIER_SIZE] = STEPPED;
    }

    public float getCurveType (int frameIndex) {
      int index = frameIndex * BEZIER_SIZE;
      if (index == curves.length) return LINEAR;
      float type = curves[index];
      if (type == LINEAR) return LINEAR;
      if (type == STEPPED) return STEPPED;
      return BEZIER;
    }

    /** Sets the control handle positions for an interpolation bezier curve used to transition from this keyframe to the next.
     * cx1 and cx2 are from 0 to 1, representing the percent of time between the two keyframes. cy1 and cy2 are the percent of
     * the difference between the keyframe's values. */
    public void setCurve (int frameIndex, float cx1, float cy1, float cx2, float cy2) {
      float subdiv1 = 1f / BEZIER_SEGMENTS, subdiv2 = subdiv1 * subdiv1, subdiv3 = subdiv2 * subdiv1;
      float pre1 = 3 * subdiv1, pre2 = 3 * subdiv2, pre4 = 6 * subdiv2, pre5 = 6 * subdiv3;
      float tmp1x = -cx1 * 2 + cx2, tmp1y = -cy1 * 2 + cy2, tmp2x = (cx1 - cx2) * 3 + 1, tmp2y = (cy1 - cy2) * 3 + 1;
      float dfx = cx1 * pre1 + tmp1x * pre2 + tmp2x * subdiv3, dfy = cy1 * pre1 + tmp1y * pre2 + tmp2y * subdiv3;
      float ddfx = tmp1x * pre4 + tmp2x * pre5, ddfy = tmp1y * pre4 + tmp2y * pre5;
      float dddfx = tmp2x * pre5, dddfy = tmp2y * pre5;

      int i = frameIndex * BEZIER_SIZE;
      float[] curves = this.curves;
      curves[i++] = BEZIER;

      float x = dfx, y = dfy;
      for (int n = i + BEZIER_SIZE - 1; i < n; i += 2) {
        curves[i] = x;
        curves[i + 1] = y;
        dfx += ddfx;
        dfy += ddfy;
        ddfx += dddfx;
        ddfy += dddfy;
        x += dfx;
        y += dfy;
      }
    }

    public float getCurvePercent (int frameIndex, float percent) {
      float[] curves = this.curves;
      int i = frameIndex * BEZIER_SIZE;
      float type = curves[i];
      if (type == LINEAR) return percent;
      if (type == STEPPED) return 0;
      i++;
      float x = 0;
      for (int start = i, n = i + BEZIER_SIZE - 1; i < n; i += 2) {
        x = curves[i];
        if (x >= percent) {
          float prevX, prevY;
          if (i == start) {
            prevX = 0;
            prevY = 0;
          } else {
            prevX = curves[i - 2];
            prevY = curves[i - 1];
          }
          return prevY + (curves[i + 1] - prevY) * (percent - prevX) / (x - prevX);
        }
      }
      float y = curves[i - 1];
      return y + (1 - y) * (percent - x) / (1 - x); // Last point is 1,1.
    }
  }

  static public class RotateTimeline extends CurveTimeline {
    static private final int PREV_FRAME_TIME = -2;
    static private final int FRAME_VALUE = 1;

    int boneIndex;
    private final float[] frames; // time, angle, ...

    public RotateTimeline (int frameCount) {
      super(frameCount);
      frames = new float[frameCount << 1];
    }

    public void setBoneIndex (int boneIndex) {
      this.boneIndex = boneIndex;
    }

    public int getBoneIndex () {
      return boneIndex;
    }

    public float[] getFrames () {
      return frames;
    }

    /** Sets the time and angle of the specified keyframe. */
    public void setFrame (int frameIndex, float time, float angle) {
      frameIndex *= 2;
      frames[frameIndex] = time;
      frames[frameIndex + 1] = angle;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) return; // Time is before first frame.

      Bone bone = skeleton.bones.get(boneIndex);

      if (time >= frames[frames.length - 2]) { // Time is after last frame.
        float amount = bone.data.rotation + frames[frames.length - 1] - bone.rotation;
        while (amount > 180)
          amount -= 360;
        while (amount < -180)
          amount += 360;
        bone.rotation += amount * alpha;
        return;
      }

      // Interpolate between the previous frame and the current frame.
      int frameIndex = binarySearch(frames, time, 2);
      float prevFrameValue = frames[frameIndex - 1];
      float frameTime = frames[frameIndex];
      float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
      percent = getCurvePercent((frameIndex >> 1) - 1, percent);

      float amount = frames[frameIndex + FRAME_VALUE] - prevFrameValue;
      while (amount > 180)
        amount -= 360;
      while (amount < -180)
        amount += 360;
      amount = bone.data.rotation + (prevFrameValue + amount * percent) - bone.rotation;
      while (amount > 180)
        amount -= 360;
      while (amount < -180)
        amount += 360;
      bone.rotation += amount * alpha;
    }
  }

  static public class TranslateTimeline extends CurveTimeline {
    static final int PREV_FRAME_TIME = -3;
    static final int FRAME_X = 1;
    static final int FRAME_Y = 2;

    int boneIndex;
    final float[] frames; // time, x, y, ...

    public TranslateTimeline (int frameCount) {
      super(frameCount);
      frames = new float[frameCount * 3];
    }

    public void setBoneIndex (int boneIndex) {
      this.boneIndex = boneIndex;
    }

    public int getBoneIndex () {
      return boneIndex;
    }

    public float[] getFrames () {
      return frames;
    }

    /** Sets the time and value of the specified keyframe. */
    public void setFrame (int frameIndex, float time, float x, float y) {
      frameIndex *= 3;
      frames[frameIndex] = time;
      frames[frameIndex + 1] = x;
      frames[frameIndex + 2] = y;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) return; // Time is before first frame.

      Bone bone = skeleton.bones.get(boneIndex);

      if (time >= frames[frames.length - 3]) { // Time is after last frame.
        bone.x += (bone.data.x + frames[frames.length - 2] - bone.x) * alpha;
        bone.y += (bone.data.y + frames[frames.length - 1] - bone.y) * alpha;
        return;
      }

      // Interpolate between the previous frame and the current frame.
      int frameIndex = binarySearch(frames, time, 3);
      float prevFrameX = frames[frameIndex - 2];
      float prevFrameY = frames[frameIndex - 1];
      float frameTime = frames[frameIndex];
      float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
      percent = getCurvePercent(frameIndex / 3 - 1, percent);

      bone.x += (bone.data.x + prevFrameX + (frames[frameIndex + FRAME_X] - prevFrameX) * percent - bone.x) * alpha;
      bone.y += (bone.data.y + prevFrameY + (frames[frameIndex + FRAME_Y] - prevFrameY) * percent - bone.y) * alpha;
    }
  }

  static public class ScaleTimeline extends TranslateTimeline {
    public ScaleTimeline (int frameCount) {
      super(frameCount);
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) return; // Time is before first frame.

      Bone bone = skeleton.bones.get(boneIndex);
      if (time >= frames[frames.length - 3]) { // Time is after last frame.
        bone.scaleX += (bone.data.scaleX * frames[frames.length - 2] - bone.scaleX) * alpha;
        bone.scaleY += (bone.data.scaleY * frames[frames.length - 1] - bone.scaleY) * alpha;
        return;
      }

      // Interpolate between the previous frame and the current frame.
      int frameIndex = binarySearch(frames, time, 3);
      float prevFrameX = frames[frameIndex - 2];
      float prevFrameY = frames[frameIndex - 1];
      float frameTime = frames[frameIndex];
      float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
      percent = getCurvePercent(frameIndex / 3 - 1, percent);

      bone.scaleX += (bone.data.scaleX * (prevFrameX + (frames[frameIndex + FRAME_X] - prevFrameX) * percent) - bone.scaleX)
        * alpha;
      bone.scaleY += (bone.data.scaleY * (prevFrameY + (frames[frameIndex + FRAME_Y] - prevFrameY) * percent) - bone.scaleY)
        * alpha;
    }
  }

  static public class ColorTimeline extends CurveTimeline {
    static private final int PREV_FRAME_TIME = -5;
    static private final int FRAME_R = 1;
    static private final int FRAME_G = 2;
    static private final int FRAME_B = 3;
    static private final int FRAME_A = 4;

    int slotIndex;
    private final float[] frames; // time, r, g, b, a, ...

    public ColorTimeline (int frameCount) {
      super(frameCount);
      frames = new float[frameCount * 5];
    }

    public void setSlotIndex (int slotIndex) {
      this.slotIndex = slotIndex;
    }

    public int getSlotIndex () {
      return slotIndex;
    }

    public float[] getFrames () {
      return frames;
    }

    /** Sets the time and value of the specified keyframe. */
    public void setFrame (int frameIndex, float time, float r, float g, float b, float a) {
      frameIndex *= 5;
      frames[frameIndex] = time;
      frames[frameIndex + 1] = r;
      frames[frameIndex + 2] = g;
      frames[frameIndex + 3] = b;
      frames[frameIndex + 4] = a;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) return; // Time is before first frame.

      float r, g, b, a;
      if (time >= frames[frames.length - 5]) {
        // Time is after last frame.
        int i = frames.length - 1;
        r = frames[i - 3];
        g = frames[i - 2];
        b = frames[i - 1];
        a = frames[i];
      } else {
        // Interpolate between the previous frame and the current frame.
        int frameIndex = binarySearch(frames, time, 5);
        float prevFrameR = frames[frameIndex - 4];
        float prevFrameG = frames[frameIndex - 3];
        float prevFrameB = frames[frameIndex - 2];
        float prevFrameA = frames[frameIndex - 1];
        float frameTime = frames[frameIndex];
        float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
        percent = getCurvePercent(frameIndex / 5 - 1, percent);

        r = prevFrameR + (frames[frameIndex + FRAME_R] - prevFrameR) * percent;
        g = prevFrameG + (frames[frameIndex + FRAME_G] - prevFrameG) * percent;
        b = prevFrameB + (frames[frameIndex + FRAME_B] - prevFrameB) * percent;
        a = prevFrameA + (frames[frameIndex + FRAME_A] - prevFrameA) * percent;
      }
      Color color = skeleton.slots.get(slotIndex).color;
      if (alpha < 1)
        color.add((r - color.r) * alpha, (g - color.g) * alpha, (b - color.b) * alpha, (a - color.a) * alpha);
      else
        color.set(r, g, b, a);
    }
  }

  static public class AttachmentTimeline implements Timeline {
    int slotIndex;
    final float[] frames; // time, ...
    final String[] attachmentNames;

    public AttachmentTimeline (int frameCount) {
      frames = new float[frameCount];
      attachmentNames = new String[frameCount];
    }

    public int getFrameCount () {
      return frames.length;
    }

    public int getSlotIndex () {
      return slotIndex;
    }

    public void setSlotIndex (int slotIndex) {
      this.slotIndex = slotIndex;
    }

    public float[] getFrames () {
      return frames;
    }

    public String[] getAttachmentNames () {
      return attachmentNames;
    }

    /** Sets the time and value of the specified keyframe. */
    public void setFrame (int frameIndex, float time, String attachmentName) {
      frames[frameIndex] = time;
      attachmentNames[frameIndex] = attachmentName;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) {
        if (lastTime > time) apply(skeleton, lastTime, Integer.MAX_VALUE, null, 0);
        return;
      } else if (lastTime > time) //
        lastTime = -1;

      int frameIndex = (time >= frames[frames.length - 1] ? frames.length : binarySearch(frames, time)) - 1;
      if (frames[frameIndex] < lastTime) return;

      String attachmentName = attachmentNames[frameIndex];
      skeleton.slots.get(slotIndex).setAttachment(
        attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName));
    }
  }

  static public class EventTimeline implements Timeline {
    private final float[] frames; // time, ...
    private final Event[] events;

    public EventTimeline (int frameCount) {
      frames = new float[frameCount];
      events = new Event[frameCount];
    }

    public int getFrameCount () {
      return frames.length;
    }

    public float[] getFrames () {
      return frames;
    }

    public Event[] getEvents () {
      return events;
    }

    /** Sets the time of the specified keyframe. */
    public void setFrame (int frameIndex, float time, Event event) {
      frames[frameIndex] = time;
      events[frameIndex] = event;
    }

    /** Fires events for frames > lastTime and <= time. */
    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> firedEvents, float alpha) {
      if (firedEvents == null) return;
      float[] frames = this.frames;
      int frameCount = frames.length;

      if (lastTime > time) { // Fire events after last time for looped animations.
        apply(skeleton, lastTime, Integer.MAX_VALUE, firedEvents, alpha);
        lastTime = -1f;
      } else if (lastTime >= frames[frameCount - 1]) // Last time is after last frame.
        return;
      if (time < frames[0]) return; // Time is before first frame.

      int frameIndex;
      if (lastTime < frames[0])
        frameIndex = 0;
      else {
        frameIndex = binarySearch(frames, lastTime);
        float frame = frames[frameIndex];
        while (frameIndex > 0) { // Fire multiple events with the same frame.
          if (frames[frameIndex - 1] != frame) break;
          frameIndex--;
        }
      }
      for (; frameIndex < frameCount && time >= frames[frameIndex]; frameIndex++)
        firedEvents.add(events[frameIndex]);
    }
  }

  static public class DrawOrderTimeline implements Timeline {
    private final float[] frames; // time, ...
    private final int[][] drawOrders;

    public DrawOrderTimeline (int frameCount) {
      frames = new float[frameCount];
      drawOrders = new int[frameCount][];
    }

    public int getFrameCount () {
      return frames.length;
    }

    public float[] getFrames () {
      return frames;
    }

    public int[][] getDrawOrders () {
      return drawOrders;
    }

    /** Sets the time of the specified keyframe.
     * @param drawOrder May be null to use bind pose draw order. */
    public void setFrame (int frameIndex, float time, int[] drawOrder) {
      frames[frameIndex] = time;
      drawOrders[frameIndex] = drawOrder;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> firedEvents, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) return; // Time is before first frame.

      int frameIndex;
      if (time >= frames[frames.length - 1]) // Time is after last frame.
        frameIndex = frames.length - 1;
      else
        frameIndex = binarySearch(frames, time) - 1;

      Array<Slot> drawOrder = skeleton.drawOrder;
      Array<Slot> slots = skeleton.slots;
      int[] drawOrderToSetupIndex = drawOrders[frameIndex];
      if (drawOrderToSetupIndex == null)
        System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size);
      else {
        for (int i = 0, n = drawOrderToSetupIndex.length; i < n; i++)
          drawOrder.set(i, slots.get(drawOrderToSetupIndex[i]));
      }
    }
  }

  static public class FfdTimeline extends CurveTimeline {
    private final float[] frames; // time, ...
    private final float[][] frameVertices;
    int slotIndex;
    Attachment attachment;

    public FfdTimeline (int frameCount) {
      super(frameCount);
      frames = new float[frameCount];
      frameVertices = new float[frameCount][];
    }

    public void setSlotIndex (int slotIndex) {
      this.slotIndex = slotIndex;
    }

    public int getSlotIndex () {
      return slotIndex;
    }

    public void setAttachment (Attachment attachment) {
      this.attachment = attachment;
    }

    public Attachment getAttachment () {
      return attachment;
    }

    public float[] getFrames () {
      return frames;
    }

    public float[][] getVertices () {
      return frameVertices;
    }

    /** Sets the time of the specified keyframe. */
    public void setFrame (int frameIndex, float time, float[] vertices) {
      frames[frameIndex] = time;
      frameVertices[frameIndex] = vertices;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> firedEvents, float alpha) {
      Slot slot = skeleton.slots.get(slotIndex);
      if (slot.getAttachment() != attachment) return;

      float[] frames = this.frames;
      if (time < frames[0]) return; // Time is before first frame.

      float[][] frameVertices = this.frameVertices;
      int vertexCount = frameVertices[0].length;

      FloatArray verticesArray = slot.getAttachmentVertices();
      if (verticesArray.size != vertexCount) alpha = 1; // Don't mix from uninitialized slot vertices.
      verticesArray.size = 0;
      verticesArray.ensureCapacity(vertexCount);
      verticesArray.size = vertexCount;
      float[] vertices = verticesArray.items;

      if (time >= frames[frames.length - 1]) { // Time is after last frame.
        float[] lastVertices = frameVertices[frames.length - 1];
        if (alpha < 1) {
          for (int i = 0; i < vertexCount; i++)
            vertices[i] += (lastVertices[i] - vertices[i]) * alpha;
        } else
          System.arraycopy(lastVertices, 0, vertices, 0, vertexCount);
        return;
      }

      // Interpolate between the previous frame and the current frame.
      int frameIndex = binarySearch(frames, time);
      float frameTime = frames[frameIndex];
      float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex - 1] - frameTime), 0, 1);
      percent = getCurvePercent(frameIndex - 1, percent);

      float[] prevVertices = frameVertices[frameIndex - 1];
      float[] nextVertices = frameVertices[frameIndex];

      if (alpha < 1) {
        for (int i = 0; i < vertexCount; i++) {
          float prev = prevVertices[i];
          vertices[i] += (prev + (nextVertices[i] - prev) * percent - vertices[i]) * alpha;
        }
      } else {
        for (int i = 0; i < vertexCount; i++) {
          float prev = prevVertices[i];
          vertices[i] = prev + (nextVertices[i] - prev) * percent;
        }
      }
    }
  }

  static public class IkConstraintTimeline extends CurveTimeline {
    static private final int PREV_FRAME_TIME = -3;
    static private final int PREV_FRAME_MIX = -2;
    static private final int PREV_FRAME_BEND_DIRECTION = -1;
    static private final int FRAME_MIX = 1;

    int ikConstraintIndex;
    private final float[] frames; // time, mix, bendDirection, ...

    public IkConstraintTimeline (int frameCount) {
      super(frameCount);
      frames = new float[frameCount * 3];
    }

    public void setIkConstraintIndex (int ikConstraint) {
      this.ikConstraintIndex = ikConstraint;
    }

    public int getIkConstraintIndex () {
      return ikConstraintIndex;
    }

    public float[] getFrames () {
      return frames;
    }

    /** Sets the time, mix and bend direction of the specified keyframe. */
    public void setFrame (int frameIndex, float time, float mix, int bendDirection) {
      frameIndex *= 3;
      frames[frameIndex] = time;
      frames[frameIndex + 1] = mix;
      frames[frameIndex + 2] = bendDirection;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) return; // Time is before first frame.

      IkConstraint ikConstraint = skeleton.ikConstraints.get(ikConstraintIndex);

      if (time >= frames[frames.length - 3]) { // Time is after last frame.
        ikConstraint.mix += (frames[frames.length - 2] - ikConstraint.mix) * alpha;
        ikConstraint.bendDirection = (int)frames[frames.length - 1];
        return;
      }

      // Interpolate between the previous frame and the current frame.
      int frameIndex = binarySearch(frames, time, 3);
      float prevFrameMix = frames[frameIndex + PREV_FRAME_MIX];
      float frameTime = frames[frameIndex];
      float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
      percent = getCurvePercent(frameIndex / 3 - 1, percent);

      float mix = prevFrameMix + (frames[frameIndex + FRAME_MIX] - prevFrameMix) * percent;
      ikConstraint.mix += (mix - ikConstraint.mix) * alpha;
      ikConstraint.bendDirection = (int)frames[frameIndex + PREV_FRAME_BEND_DIRECTION];
    }
  }

  static public class FlipXTimeline implements Timeline {
    int boneIndex;
    final float[] frames; // time, flip, ...

    public FlipXTimeline (int frameCount) {
      frames = new float[frameCount << 1];
    }

    public void setBoneIndex (int boneIndex) {
      this.boneIndex = boneIndex;
    }

    public int getBoneIndex () {
      return boneIndex;
    }

    public int getFrameCount () {
      return frames.length >> 1;
    }

    public float[] getFrames () {
      return frames;
    }

    /** Sets the time and value of the specified keyframe. */
    public void setFrame (int frameIndex, float time, boolean flip) {
      frameIndex *= 2;
      frames[frameIndex] = time;
      frames[frameIndex + 1] = flip ? 1 : 0;
    }

    public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
      float[] frames = this.frames;
      if (time < frames[0]) {
        if (lastTime > time) apply(skeleton, lastTime, Integer.MAX_VALUE, null, 0);
        return;
      } else if (lastTime > time) //
        lastTime = -1;
      int frameIndex = (time >= frames[frames.length - 2] ? frames.length : binarySearch(frames, time, 2)) - 2;
      if (frames[frameIndex] <= lastTime) return;
      setFlip(skeleton.bones.get(boneIndex), frames[frameIndex + 1] != 0);
    }

    protected void setFlip (Bone bone, boolean flip) {
      bone.setFlipX(flip);
    }
  }

  static public class FlipYTimeline extends FlipXTimeline {
    public FlipYTimeline (int frameCount) {
      super(frameCount);
    }

    protected void setFlip (Bone bone, boolean flip) {
      bone.setFlipY(flip);
    }
  }
}
TOP

Related Classes of com.esotericsoftware.spine.Animation$FlipYTimeline

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.