/******************************************************************************
* Spine Runtimes Software License
* Version 2.1
*
* Copyright (c) 2013, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable and
* non-transferable license to install, execute and perform the Spine Runtimes
* Software (the "Software") solely for internal use. Without the written
* permission of Esoteric Software (typically granted by licensing Spine), you
* may not (a) modify, translate, adapt or otherwise create derivative works,
* improvements of the Software or develop new applications using the Software
* or (b) remove, delete, alter or obscure any trademarks or any copyright,
* trademark, patent or other intellectual property or proprietary rights
* notices on or in the Software, including any copy thereof. Redistributions
* in binary or source form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
package com.esotericsoftware.spine;
import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.FloatArray;
import com.esotericsoftware.spine.attachments.Attachment;
public class Animation {
final String name;
private final Array<Timeline> timelines;
private float duration;
public Animation (String name, Array<Timeline> timelines, float duration) {
if (name == null) throw new IllegalArgumentException("name cannot be null.");
if (timelines == null) throw new IllegalArgumentException("timelines cannot be null.");
this.name = name;
this.timelines = timelines;
this.duration = duration;
}
public Array<Timeline> getTimelines () {
return timelines;
}
/** Returns the duration of the animation in seconds. */
public float getDuration () {
return duration;
}
public void setDuration (float duration) {
this.duration = duration;
}
/** Poses the skeleton at the specified time for this animation.
* @param lastTime The last time the animation was applied.
* @param events Any triggered events are added. */
public void apply (Skeleton skeleton, float lastTime, float time, boolean loop, Array<Event> events) {
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
if (loop && duration != 0) {
time %= duration;
lastTime %= duration;
}
Array<Timeline> timelines = this.timelines;
for (int i = 0, n = timelines.size; i < n; i++)
timelines.get(i).apply(skeleton, lastTime, time, events, 1);
}
/** Poses the skeleton at the specified time for this animation mixed with the current pose.
* @param lastTime The last time the animation was applied.
* @param events Any triggered events are added.
* @param alpha The amount of this animation that affects the current pose. */
public void mix (Skeleton skeleton, float lastTime, float time, boolean loop, Array<Event> events, float alpha) {
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
if (loop && duration != 0) {
time %= duration;
lastTime %= duration;
}
Array<Timeline> timelines = this.timelines;
for (int i = 0, n = timelines.size; i < n; i++)
timelines.get(i).apply(skeleton, lastTime, time, events, alpha);
}
public String getName () {
return name;
}
public String toString () {
return name;
}
/** @param target After the first and before the last value.
* @return index of first value greater than the target. */
static int binarySearch (float[] values, float target, int step) {
int low = 0;
int high = values.length / step - 2;
if (high == 0) return step;
int current = high >>> 1;
while (true) {
if (values[(current + 1) * step] <= target)
low = current + 1;
else
high = current;
if (low == high) return (low + 1) * step;
current = (low + high) >>> 1;
}
}
/** @param target After the first and before the last value.
* @return index of first value greater than the target. */
static int binarySearch (float[] values, float target) {
int low = 0;
int high = values.length - 2;
if (high == 0) return 1;
int current = high >>> 1;
while (true) {
if (values[current + 1] <= target)
low = current + 1;
else
high = current;
if (low == high) return low + 1;
current = (low + high) >>> 1;
}
}
static int linearSearch (float[] values, float target, int step) {
for (int i = 0, last = values.length - step; i <= last; i += step)
if (values[i] > target) return i;
return -1;
}
static public interface Timeline {
/** Sets the value(s) for the specified time.
* @param events May be null to not collect fired events. */
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha);
}
/** Base class for frames that use an interpolation bezier curve. */
abstract static public class CurveTimeline implements Timeline {
static public final float LINEAR = 0, STEPPED = 1, BEZIER = 2;
static private final int BEZIER_SEGMENTS = 10, BEZIER_SIZE = BEZIER_SEGMENTS * 2 - 1;
private final float[] curves; // type, x, y, ...
public CurveTimeline (int frameCount) {
if (frameCount <= 0) throw new IllegalArgumentException("frameCount must be > 0: " + frameCount);
curves = new float[(frameCount - 1) * BEZIER_SIZE];
}
public int getFrameCount () {
return curves.length / BEZIER_SIZE + 1;
}
public void setLinear (int frameIndex) {
curves[frameIndex * BEZIER_SIZE] = LINEAR;
}
public void setStepped (int frameIndex) {
curves[frameIndex * BEZIER_SIZE] = STEPPED;
}
public float getCurveType (int frameIndex) {
int index = frameIndex * BEZIER_SIZE;
if (index == curves.length) return LINEAR;
float type = curves[index];
if (type == LINEAR) return LINEAR;
if (type == STEPPED) return STEPPED;
return BEZIER;
}
/** Sets the control handle positions for an interpolation bezier curve used to transition from this keyframe to the next.
* cx1 and cx2 are from 0 to 1, representing the percent of time between the two keyframes. cy1 and cy2 are the percent of
* the difference between the keyframe's values. */
public void setCurve (int frameIndex, float cx1, float cy1, float cx2, float cy2) {
float subdiv1 = 1f / BEZIER_SEGMENTS, subdiv2 = subdiv1 * subdiv1, subdiv3 = subdiv2 * subdiv1;
float pre1 = 3 * subdiv1, pre2 = 3 * subdiv2, pre4 = 6 * subdiv2, pre5 = 6 * subdiv3;
float tmp1x = -cx1 * 2 + cx2, tmp1y = -cy1 * 2 + cy2, tmp2x = (cx1 - cx2) * 3 + 1, tmp2y = (cy1 - cy2) * 3 + 1;
float dfx = cx1 * pre1 + tmp1x * pre2 + tmp2x * subdiv3, dfy = cy1 * pre1 + tmp1y * pre2 + tmp2y * subdiv3;
float ddfx = tmp1x * pre4 + tmp2x * pre5, ddfy = tmp1y * pre4 + tmp2y * pre5;
float dddfx = tmp2x * pre5, dddfy = tmp2y * pre5;
int i = frameIndex * BEZIER_SIZE;
float[] curves = this.curves;
curves[i++] = BEZIER;
float x = dfx, y = dfy;
for (int n = i + BEZIER_SIZE - 1; i < n; i += 2) {
curves[i] = x;
curves[i + 1] = y;
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
x += dfx;
y += dfy;
}
}
public float getCurvePercent (int frameIndex, float percent) {
float[] curves = this.curves;
int i = frameIndex * BEZIER_SIZE;
float type = curves[i];
if (type == LINEAR) return percent;
if (type == STEPPED) return 0;
i++;
float x = 0;
for (int start = i, n = i + BEZIER_SIZE - 1; i < n; i += 2) {
x = curves[i];
if (x >= percent) {
float prevX, prevY;
if (i == start) {
prevX = 0;
prevY = 0;
} else {
prevX = curves[i - 2];
prevY = curves[i - 1];
}
return prevY + (curves[i + 1] - prevY) * (percent - prevX) / (x - prevX);
}
}
float y = curves[i - 1];
return y + (1 - y) * (percent - x) / (1 - x); // Last point is 1,1.
}
}
static public class RotateTimeline extends CurveTimeline {
static private final int PREV_FRAME_TIME = -2;
static private final int FRAME_VALUE = 1;
int boneIndex;
private final float[] frames; // time, angle, ...
public RotateTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount << 1];
}
public void setBoneIndex (int boneIndex) {
this.boneIndex = boneIndex;
}
public int getBoneIndex () {
return boneIndex;
}
public float[] getFrames () {
return frames;
}
/** Sets the time and angle of the specified keyframe. */
public void setFrame (int frameIndex, float time, float angle) {
frameIndex *= 2;
frames[frameIndex] = time;
frames[frameIndex + 1] = angle;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) return; // Time is before first frame.
Bone bone = skeleton.bones.get(boneIndex);
if (time >= frames[frames.length - 2]) { // Time is after last frame.
float amount = bone.data.rotation + frames[frames.length - 1] - bone.rotation;
while (amount > 180)
amount -= 360;
while (amount < -180)
amount += 360;
bone.rotation += amount * alpha;
return;
}
// Interpolate between the previous frame and the current frame.
int frameIndex = binarySearch(frames, time, 2);
float prevFrameValue = frames[frameIndex - 1];
float frameTime = frames[frameIndex];
float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
percent = getCurvePercent((frameIndex >> 1) - 1, percent);
float amount = frames[frameIndex + FRAME_VALUE] - prevFrameValue;
while (amount > 180)
amount -= 360;
while (amount < -180)
amount += 360;
amount = bone.data.rotation + (prevFrameValue + amount * percent) - bone.rotation;
while (amount > 180)
amount -= 360;
while (amount < -180)
amount += 360;
bone.rotation += amount * alpha;
}
}
static public class TranslateTimeline extends CurveTimeline {
static final int PREV_FRAME_TIME = -3;
static final int FRAME_X = 1;
static final int FRAME_Y = 2;
int boneIndex;
final float[] frames; // time, x, y, ...
public TranslateTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * 3];
}
public void setBoneIndex (int boneIndex) {
this.boneIndex = boneIndex;
}
public int getBoneIndex () {
return boneIndex;
}
public float[] getFrames () {
return frames;
}
/** Sets the time and value of the specified keyframe. */
public void setFrame (int frameIndex, float time, float x, float y) {
frameIndex *= 3;
frames[frameIndex] = time;
frames[frameIndex + 1] = x;
frames[frameIndex + 2] = y;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) return; // Time is before first frame.
Bone bone = skeleton.bones.get(boneIndex);
if (time >= frames[frames.length - 3]) { // Time is after last frame.
bone.x += (bone.data.x + frames[frames.length - 2] - bone.x) * alpha;
bone.y += (bone.data.y + frames[frames.length - 1] - bone.y) * alpha;
return;
}
// Interpolate between the previous frame and the current frame.
int frameIndex = binarySearch(frames, time, 3);
float prevFrameX = frames[frameIndex - 2];
float prevFrameY = frames[frameIndex - 1];
float frameTime = frames[frameIndex];
float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
percent = getCurvePercent(frameIndex / 3 - 1, percent);
bone.x += (bone.data.x + prevFrameX + (frames[frameIndex + FRAME_X] - prevFrameX) * percent - bone.x) * alpha;
bone.y += (bone.data.y + prevFrameY + (frames[frameIndex + FRAME_Y] - prevFrameY) * percent - bone.y) * alpha;
}
}
static public class ScaleTimeline extends TranslateTimeline {
public ScaleTimeline (int frameCount) {
super(frameCount);
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) return; // Time is before first frame.
Bone bone = skeleton.bones.get(boneIndex);
if (time >= frames[frames.length - 3]) { // Time is after last frame.
bone.scaleX += (bone.data.scaleX * frames[frames.length - 2] - bone.scaleX) * alpha;
bone.scaleY += (bone.data.scaleY * frames[frames.length - 1] - bone.scaleY) * alpha;
return;
}
// Interpolate between the previous frame and the current frame.
int frameIndex = binarySearch(frames, time, 3);
float prevFrameX = frames[frameIndex - 2];
float prevFrameY = frames[frameIndex - 1];
float frameTime = frames[frameIndex];
float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
percent = getCurvePercent(frameIndex / 3 - 1, percent);
bone.scaleX += (bone.data.scaleX * (prevFrameX + (frames[frameIndex + FRAME_X] - prevFrameX) * percent) - bone.scaleX)
* alpha;
bone.scaleY += (bone.data.scaleY * (prevFrameY + (frames[frameIndex + FRAME_Y] - prevFrameY) * percent) - bone.scaleY)
* alpha;
}
}
static public class ColorTimeline extends CurveTimeline {
static private final int PREV_FRAME_TIME = -5;
static private final int FRAME_R = 1;
static private final int FRAME_G = 2;
static private final int FRAME_B = 3;
static private final int FRAME_A = 4;
int slotIndex;
private final float[] frames; // time, r, g, b, a, ...
public ColorTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * 5];
}
public void setSlotIndex (int slotIndex) {
this.slotIndex = slotIndex;
}
public int getSlotIndex () {
return slotIndex;
}
public float[] getFrames () {
return frames;
}
/** Sets the time and value of the specified keyframe. */
public void setFrame (int frameIndex, float time, float r, float g, float b, float a) {
frameIndex *= 5;
frames[frameIndex] = time;
frames[frameIndex + 1] = r;
frames[frameIndex + 2] = g;
frames[frameIndex + 3] = b;
frames[frameIndex + 4] = a;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) return; // Time is before first frame.
float r, g, b, a;
if (time >= frames[frames.length - 5]) {
// Time is after last frame.
int i = frames.length - 1;
r = frames[i - 3];
g = frames[i - 2];
b = frames[i - 1];
a = frames[i];
} else {
// Interpolate between the previous frame and the current frame.
int frameIndex = binarySearch(frames, time, 5);
float prevFrameR = frames[frameIndex - 4];
float prevFrameG = frames[frameIndex - 3];
float prevFrameB = frames[frameIndex - 2];
float prevFrameA = frames[frameIndex - 1];
float frameTime = frames[frameIndex];
float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
percent = getCurvePercent(frameIndex / 5 - 1, percent);
r = prevFrameR + (frames[frameIndex + FRAME_R] - prevFrameR) * percent;
g = prevFrameG + (frames[frameIndex + FRAME_G] - prevFrameG) * percent;
b = prevFrameB + (frames[frameIndex + FRAME_B] - prevFrameB) * percent;
a = prevFrameA + (frames[frameIndex + FRAME_A] - prevFrameA) * percent;
}
Color color = skeleton.slots.get(slotIndex).color;
if (alpha < 1)
color.add((r - color.r) * alpha, (g - color.g) * alpha, (b - color.b) * alpha, (a - color.a) * alpha);
else
color.set(r, g, b, a);
}
}
static public class AttachmentTimeline implements Timeline {
int slotIndex;
final float[] frames; // time, ...
final String[] attachmentNames;
public AttachmentTimeline (int frameCount) {
frames = new float[frameCount];
attachmentNames = new String[frameCount];
}
public int getFrameCount () {
return frames.length;
}
public int getSlotIndex () {
return slotIndex;
}
public void setSlotIndex (int slotIndex) {
this.slotIndex = slotIndex;
}
public float[] getFrames () {
return frames;
}
public String[] getAttachmentNames () {
return attachmentNames;
}
/** Sets the time and value of the specified keyframe. */
public void setFrame (int frameIndex, float time, String attachmentName) {
frames[frameIndex] = time;
attachmentNames[frameIndex] = attachmentName;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) {
if (lastTime > time) apply(skeleton, lastTime, Integer.MAX_VALUE, null, 0);
return;
} else if (lastTime > time) //
lastTime = -1;
int frameIndex = (time >= frames[frames.length - 1] ? frames.length : binarySearch(frames, time)) - 1;
if (frames[frameIndex] < lastTime) return;
String attachmentName = attachmentNames[frameIndex];
skeleton.slots.get(slotIndex).setAttachment(
attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName));
}
}
static public class EventTimeline implements Timeline {
private final float[] frames; // time, ...
private final Event[] events;
public EventTimeline (int frameCount) {
frames = new float[frameCount];
events = new Event[frameCount];
}
public int getFrameCount () {
return frames.length;
}
public float[] getFrames () {
return frames;
}
public Event[] getEvents () {
return events;
}
/** Sets the time of the specified keyframe. */
public void setFrame (int frameIndex, float time, Event event) {
frames[frameIndex] = time;
events[frameIndex] = event;
}
/** Fires events for frames > lastTime and <= time. */
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> firedEvents, float alpha) {
if (firedEvents == null) return;
float[] frames = this.frames;
int frameCount = frames.length;
if (lastTime > time) { // Fire events after last time for looped animations.
apply(skeleton, lastTime, Integer.MAX_VALUE, firedEvents, alpha);
lastTime = -1f;
} else if (lastTime >= frames[frameCount - 1]) // Last time is after last frame.
return;
if (time < frames[0]) return; // Time is before first frame.
int frameIndex;
if (lastTime < frames[0])
frameIndex = 0;
else {
frameIndex = binarySearch(frames, lastTime);
float frame = frames[frameIndex];
while (frameIndex > 0) { // Fire multiple events with the same frame.
if (frames[frameIndex - 1] != frame) break;
frameIndex--;
}
}
for (; frameIndex < frameCount && time >= frames[frameIndex]; frameIndex++)
firedEvents.add(events[frameIndex]);
}
}
static public class DrawOrderTimeline implements Timeline {
private final float[] frames; // time, ...
private final int[][] drawOrders;
public DrawOrderTimeline (int frameCount) {
frames = new float[frameCount];
drawOrders = new int[frameCount][];
}
public int getFrameCount () {
return frames.length;
}
public float[] getFrames () {
return frames;
}
public int[][] getDrawOrders () {
return drawOrders;
}
/** Sets the time of the specified keyframe.
* @param drawOrder May be null to use bind pose draw order. */
public void setFrame (int frameIndex, float time, int[] drawOrder) {
frames[frameIndex] = time;
drawOrders[frameIndex] = drawOrder;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> firedEvents, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) return; // Time is before first frame.
int frameIndex;
if (time >= frames[frames.length - 1]) // Time is after last frame.
frameIndex = frames.length - 1;
else
frameIndex = binarySearch(frames, time) - 1;
Array<Slot> drawOrder = skeleton.drawOrder;
Array<Slot> slots = skeleton.slots;
int[] drawOrderToSetupIndex = drawOrders[frameIndex];
if (drawOrderToSetupIndex == null)
System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size);
else {
for (int i = 0, n = drawOrderToSetupIndex.length; i < n; i++)
drawOrder.set(i, slots.get(drawOrderToSetupIndex[i]));
}
}
}
static public class FfdTimeline extends CurveTimeline {
private final float[] frames; // time, ...
private final float[][] frameVertices;
int slotIndex;
Attachment attachment;
public FfdTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount];
frameVertices = new float[frameCount][];
}
public void setSlotIndex (int slotIndex) {
this.slotIndex = slotIndex;
}
public int getSlotIndex () {
return slotIndex;
}
public void setAttachment (Attachment attachment) {
this.attachment = attachment;
}
public Attachment getAttachment () {
return attachment;
}
public float[] getFrames () {
return frames;
}
public float[][] getVertices () {
return frameVertices;
}
/** Sets the time of the specified keyframe. */
public void setFrame (int frameIndex, float time, float[] vertices) {
frames[frameIndex] = time;
frameVertices[frameIndex] = vertices;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> firedEvents, float alpha) {
Slot slot = skeleton.slots.get(slotIndex);
if (slot.getAttachment() != attachment) return;
float[] frames = this.frames;
if (time < frames[0]) return; // Time is before first frame.
float[][] frameVertices = this.frameVertices;
int vertexCount = frameVertices[0].length;
FloatArray verticesArray = slot.getAttachmentVertices();
if (verticesArray.size != vertexCount) alpha = 1; // Don't mix from uninitialized slot vertices.
verticesArray.size = 0;
verticesArray.ensureCapacity(vertexCount);
verticesArray.size = vertexCount;
float[] vertices = verticesArray.items;
if (time >= frames[frames.length - 1]) { // Time is after last frame.
float[] lastVertices = frameVertices[frames.length - 1];
if (alpha < 1) {
for (int i = 0; i < vertexCount; i++)
vertices[i] += (lastVertices[i] - vertices[i]) * alpha;
} else
System.arraycopy(lastVertices, 0, vertices, 0, vertexCount);
return;
}
// Interpolate between the previous frame and the current frame.
int frameIndex = binarySearch(frames, time);
float frameTime = frames[frameIndex];
float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex - 1] - frameTime), 0, 1);
percent = getCurvePercent(frameIndex - 1, percent);
float[] prevVertices = frameVertices[frameIndex - 1];
float[] nextVertices = frameVertices[frameIndex];
if (alpha < 1) {
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] += (prev + (nextVertices[i] - prev) * percent - vertices[i]) * alpha;
}
} else {
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] = prev + (nextVertices[i] - prev) * percent;
}
}
}
}
static public class IkConstraintTimeline extends CurveTimeline {
static private final int PREV_FRAME_TIME = -3;
static private final int PREV_FRAME_MIX = -2;
static private final int PREV_FRAME_BEND_DIRECTION = -1;
static private final int FRAME_MIX = 1;
int ikConstraintIndex;
private final float[] frames; // time, mix, bendDirection, ...
public IkConstraintTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * 3];
}
public void setIkConstraintIndex (int ikConstraint) {
this.ikConstraintIndex = ikConstraint;
}
public int getIkConstraintIndex () {
return ikConstraintIndex;
}
public float[] getFrames () {
return frames;
}
/** Sets the time, mix and bend direction of the specified keyframe. */
public void setFrame (int frameIndex, float time, float mix, int bendDirection) {
frameIndex *= 3;
frames[frameIndex] = time;
frames[frameIndex + 1] = mix;
frames[frameIndex + 2] = bendDirection;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) return; // Time is before first frame.
IkConstraint ikConstraint = skeleton.ikConstraints.get(ikConstraintIndex);
if (time >= frames[frames.length - 3]) { // Time is after last frame.
ikConstraint.mix += (frames[frames.length - 2] - ikConstraint.mix) * alpha;
ikConstraint.bendDirection = (int)frames[frames.length - 1];
return;
}
// Interpolate between the previous frame and the current frame.
int frameIndex = binarySearch(frames, time, 3);
float prevFrameMix = frames[frameIndex + PREV_FRAME_MIX];
float frameTime = frames[frameIndex];
float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1);
percent = getCurvePercent(frameIndex / 3 - 1, percent);
float mix = prevFrameMix + (frames[frameIndex + FRAME_MIX] - prevFrameMix) * percent;
ikConstraint.mix += (mix - ikConstraint.mix) * alpha;
ikConstraint.bendDirection = (int)frames[frameIndex + PREV_FRAME_BEND_DIRECTION];
}
}
static public class FlipXTimeline implements Timeline {
int boneIndex;
final float[] frames; // time, flip, ...
public FlipXTimeline (int frameCount) {
frames = new float[frameCount << 1];
}
public void setBoneIndex (int boneIndex) {
this.boneIndex = boneIndex;
}
public int getBoneIndex () {
return boneIndex;
}
public int getFrameCount () {
return frames.length >> 1;
}
public float[] getFrames () {
return frames;
}
/** Sets the time and value of the specified keyframe. */
public void setFrame (int frameIndex, float time, boolean flip) {
frameIndex *= 2;
frames[frameIndex] = time;
frames[frameIndex + 1] = flip ? 1 : 0;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array<Event> events, float alpha) {
float[] frames = this.frames;
if (time < frames[0]) {
if (lastTime > time) apply(skeleton, lastTime, Integer.MAX_VALUE, null, 0);
return;
} else if (lastTime > time) //
lastTime = -1;
int frameIndex = (time >= frames[frames.length - 2] ? frames.length : binarySearch(frames, time, 2)) - 2;
if (frames[frameIndex] <= lastTime) return;
setFlip(skeleton.bones.get(boneIndex), frames[frameIndex + 1] != 0);
}
protected void setFlip (Bone bone, boolean flip) {
bone.setFlipX(flip);
}
}
static public class FlipYTimeline extends FlipXTimeline {
public FlipYTimeline (int frameCount) {
super(frameCount);
}
protected void setFlip (Bone bone, boolean flip) {
bone.setFlipY(flip);
}
}
}