/*
* Copyright (C) 2011 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.math;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.math.DoubleUtils.IMPLICIT_BIT;
import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS;
import static com.google.common.math.DoubleUtils.getExponent;
import static com.google.common.math.DoubleUtils.getSignificand;
import static com.google.common.math.DoubleUtils.isFinite;
import static com.google.common.math.DoubleUtils.isNormal;
import static com.google.common.math.DoubleUtils.next;
import static com.google.common.math.DoubleUtils.scaleNormalize;
import static com.google.common.math.MathPreconditions.checkInRange;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import java.math.BigInteger;
import java.math.RoundingMode;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.annotations.Beta;
/**
* A class for arithmetic on doubles that is not covered by {@link java.lang.Math}.
*
* @author Louis Wasserman
* @since 11.0
*/
@Beta
public final class DoubleMath {
/*
* This method returns a value y such that rounding y DOWN (towards zero) gives the same result
* as rounding x according to the specified mode.
*/
static double roundIntermediate(double x, RoundingMode mode) {
if (!isFinite(x)) {
throw new ArithmeticException("input is infinite or NaN");
}
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(isMathematicalInteger(x));
return x;
case FLOOR:
return (x >= 0.0) ? x : Math.floor(x);
case CEILING:
return (x >= 0.0) ? Math.ceil(x) : x;
case DOWN:
return x;
case UP:
return (x >= 0.0) ? Math.ceil(x) : Math.floor(x);
case HALF_EVEN:
return Math.rint(x);
case HALF_UP:
if (isMathematicalInteger(x)) {
return x;
} else {
return (x >= 0.0) ? x + 0.5 : x - 0.5;
}
case HALF_DOWN:
if (isMathematicalInteger(x)) {
return x;
} else if (x >= 0.0) {
double z = x + 0.5;
return (z == x) ? x : next(z, false); // x + 0.5 - epsilon
} else {
double z = x - 0.5;
return (z == x) ? x : next(z, true); // x - 0.5 + epsilon
}
default:
throw new AssertionError();
}
}
/**
* Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding
* mode, if possible.
*
* @throws ArithmeticException if
* <ul>
* <li>{@code x} is infinite or NaN
* <li>{@code x}, after being rounded to a mathematical integer using the specified
* rounding mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code
* Integer.MAX_VALUE}
* <li>{@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
* </ul>
*/
public static int roundToInt(double x, RoundingMode mode) {
double z = roundIntermediate(x, mode);
checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0);
return (int) z;
}
private static final double MIN_INT_AS_DOUBLE = -0x1p31;
private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;
/**
* Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding
* mode, if possible.
*
* @throws ArithmeticException if
* <ul>
* <li>{@code x} is infinite or NaN
* <li>{@code x}, after being rounded to a mathematical integer using the specified
* rounding mode, is either less than {@code Long.MIN_VALUE} or greater than {@code
* Long.MAX_VALUE}
* <li>{@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
* </ul>
*/
public static long roundToLong(double x, RoundingMode mode) {
double z = roundIntermediate(x, mode);
checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE);
return (long) z;
}
private static final double MIN_LONG_AS_DOUBLE = -0x1p63;
/*
* We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store
* Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1.
*/
private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;
/**
* Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified
* rounding mode, if possible.
*
* @throws ArithmeticException if
* <ul>
* <li>{@code x} is infinite or NaN
* <li>{@code x} is not a mathematical integer and {@code mode} is
* {@link RoundingMode#UNNECESSARY}
* </ul>
*/
public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
x = roundIntermediate(x, mode);
if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
return BigInteger.valueOf((long) x);
}
int exponent = getExponent(x);
if (exponent < 0) {
return BigInteger.ZERO;
}
long significand = getSignificand(x);
BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
return (x < 0) ? result.negate() : result;
}
/**
* Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer
* {@code k}.
*/
public static boolean isPowerOfTwo(double x) {
return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x));
}
/**
* Returns the base 2 logarithm of a double value.
*
* <p>Special cases:
* <ul>
* <li>If {@code x} is NaN or less than zero, the result is NaN.
* <li>If {@code x} is positive infinity, the result is positive infinity.
* <li>If {@code x} is positive or negative zero, the result is negative infinity.
* </ul>
*
* <p>The computed result must be within 1 ulp of the exact result.
*
* <p>If the result of this method will be immediately rounded to an {@code int},
* {@link #log2(double, RoundingMode)} is faster.
*/
public static double log2(double x) {
return Math.log(x) / LN_2; // surprisingly within 1 ulp according to tests
}
private static final double LN_2 = Math.log(2);
/**
* Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an
* {@code int}.
*
* <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}.
*
* @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is
* infinite
*/
@SuppressWarnings("fallthrough")
public static int log2(double x, RoundingMode mode) {
checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite");
int exponent = getExponent(x);
if (!isNormal(x)) {
return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS;
// Do the calculation on a normal value.
}
// x is positive, finite, and normal
boolean increment;
switch (mode) {
case UNNECESSARY:
checkRoundingUnnecessary(isPowerOfTwo(x));
// fall through
case FLOOR:
increment = false;
break;
case CEILING:
increment = !isPowerOfTwo(x);
break;
case DOWN:
increment = exponent < 0 & !isPowerOfTwo(x);
break;
case UP:
increment = exponent >= 0 & !isPowerOfTwo(x);
break;
case HALF_DOWN:
case HALF_EVEN:
case HALF_UP:
double xScaled = scaleNormalize(x);
// sqrt(2) is irrational, and the spec is relative to the "exact numerical result,"
// so log2(x) is never exactly exponent + 0.5.
increment = (xScaled * xScaled) > 2.0;
break;
default:
throw new AssertionError();
}
return increment ? exponent + 1 : exponent;
}
/**
* Returns {@code true} if {@code x} represents a mathematical integer.
*
* <p>This is equivalent to, but not necessarily implemented as, the expression {@code
* !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}.
*/
public static boolean isMathematicalInteger(double x) {
return isFinite(x)
&& (x == 0.0 || SIGNIFICAND_BITS
- Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x));
}
/**
* Returns {@code n!}, that is, the product of the first {@code n} positive
* integers, {@code 1} if {@code n == 0}, or e n!}, or
* {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}.
*
* <p>The result is within 1 ulp of the true value.
*
* @throws IllegalArgumentException if {@code n < 0}
*/
public static double factorial(int n) {
checkNonNegative("n", n);
if (n > MAX_FACTORIAL) {
return Double.POSITIVE_INFINITY;
} else {
// Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate
// result than multiplying by EVERY_SIXTEENTH_FACTORIAL[n >> 4] directly.
double accum = 1.0;
for (int i = 1 + (n & ~0xf); i <= n; i++) {
accum *= i;
}
return accum * EVERY_SIXTEENTH_FACTORIAL[n >> 4];
}
}
@VisibleForTesting
static final int MAX_FACTORIAL = 170;
@VisibleForTesting
static final double[] EVERY_SIXTEENTH_FACTORIAL = {
0x1.0p0,
0x1.30777758p44,
0x1.956ad0aae33a4p117,
0x1.ee69a78d72cb6p202,
0x1.fe478ee34844ap295,
0x1.c619094edabffp394,
0x1.3638dd7bd6347p498,
0x1.7cac197cfe503p605,
0x1.1e5dfc140e1e5p716,
0x1.8ce85fadb707ep829,
0x1.95d5f3d928edep945};
}