Package edu.uci.jforestsx.input

Source Code of edu.uci.jforestsx.input.FeatureAnalyzer

/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package edu.uci.jforestsx.input;

import java.io.*;
import java.util.HashMap;
import java.util.TreeMap;

import edu.uci.jforestsx.input.sparse.FeatureMetaData;
import edu.uci.jforestsx.input.sparse.MetaData;
import edu.uci.jforestsx.input.sparse.MetaLineParser;
import edu.uci.jforestsx.input.sparse.SparseTextFileLine;
import edu.uci.jforestsx.input.sparse.SparseTextFileReader;

/**
* Extracts feature ranges from sparse textual file.
*/

/**
* @author Yasser Ganjisaffar <ganjisaffar at gmail dot com>
*/

public class FeatureAnalyzer implements Serializable { // SISTA added Serializable

  private final static int MAX_FEATURE_VALUE = Short.MAX_VALUE - 1;
 
  private TreeMap<Integer, FeatureStatistics> fid2statistics;
  private HashMap<Integer, String> fid2name;
 
  public double[] min;
  public double[] max;
  public double[] factor;
  public boolean[] onLogScale;

  public FeatureAnalyzer() {
    fid2statistics = new TreeMap<Integer, FeatureStatistics>();
    fid2name = new HashMap<Integer, String>();
  }

  public void clear() {
    fid2statistics.clear();
    fid2name.clear();
  }

  public void processFolder(String folder, String extension) {
    File[] files = new File(folder).listFiles();
    for (File file : files) {
      if (file.getAbsolutePath().endsWith(extension)) {
        processFile(file.getAbsolutePath());
      }
    }
  }

  public void processFiles(String folder, String[] files) {
    for (String file : files) {
      processFile(folder + file);
    }
  }

  public void processFile(String inputFile) {
    System.out.println("Processing: " + inputFile);
    SparseTextFileReader reader = new SparseTextFileReader();
    reader.open(inputFile);
    SparseTextFileLine line = new SparseTextFileLine();
    FeatureStatistics stat;
    int count = 0;
    int maxFeatureIndex = 0;
    while (reader.loadNextLine(line)) {
      if (line.meta) {
        MetaData metaData = MetaLineParser.parse(line.content);
        if (metaData instanceof FeatureMetaData) {
          fid2name.put(((FeatureMetaData) metaData).id, ((FeatureMetaData) metaData).name);
        }
      } else {
        int prevIdx = 0;
        for (int i = 0; i < line.numPairs; i++) {
          FeatureValuePair pair = line.pairs[i];
          if (pair.featureIndex != (prevIdx + 1)) {
            for (int f = prevIdx + 1; f < pair.featureIndex; f++) {
              stat = fid2statistics.get(f);
              if (stat != null) {
                if (stat.maxValue < 0) {
                  stat.maxValue = 0;
                }
                if (stat.minValue > 0) {
                  stat.minValue = 0;
                }
              }
            }
          }
          stat = fid2statistics.get(pair.featureIndex);
          if (stat == null) {
            stat = new FeatureStatistics();
            fid2statistics.put(pair.featureIndex, stat);
            if (count > 0) {
              stat.minValue = 0;
              stat.maxValue = 0;
            }
            if (pair.featureIndex > maxFeatureIndex) {
              maxFeatureIndex = pair.featureIndex;
            }
          }
          if (Double.isInfinite(pair.featureValue)) {
            System.out.println(count + "\t" + pair.featureValue);
          }
          if (pair.featureValue > stat.maxValue) {
            stat.maxValue = pair.featureValue;
          }
          if (pair.featureValue < stat.minValue) {
            stat.minValue = pair.featureValue;
          }         
          prevIdx = pair.featureIndex;
        }
        if (prevIdx < maxFeatureIndex) {
          for (int f = prevIdx + 1; f <= maxFeatureIndex; f++) {
            stat = fid2statistics.get(f);
            if (stat != null) {
              if (stat.maxValue < 0) {
                stat.maxValue = 0;
              }
              if (stat.minValue > 0) {
                stat.minValue = 0;
              }
            }
          }
        }
        count++;
        if (count % 100000 == 0) {
          System.out.println("\t Processed: " + count);
          dumpStatistics(System.out);
        }
      }
    }
    reader.close();
    loadStatistics();   
  }
 
  private void loadStatistics() {
    int featureCount = getFeatureCount();
    min = new double[featureCount];
    max = new double[featureCount];
    factor = new double[featureCount];
    onLogScale = new boolean[featureCount];
   
    for (int f = 0; f < featureCount; f++) {
      FeatureStatistics stat = getStatistics(f + 1);
      if (stat == null) {
        max[f] = min[f] = 0;
      } else {
        min[f] = stat.minValue;
        max[f] = stat.maxValue; 
      }
      double range = max[f] - min[f];
      if (range < MAX_FEATURE_VALUE) {
        factor[f] = MAX_FEATURE_VALUE / range;
      } else {
        factor[f] = MAX_FEATURE_VALUE / Math.log(range + 1);
        onLogScale[f] = true;
      }
    }
  }

  public FeatureStatistics getStatistics(int fid) {
    return fid2statistics.get(fid);
  }
 
  public String getFeatureName(int fid) {
    return fid2name.get(fid);
  }

  public int getFeatureCount() {
    return fid2statistics.lastKey();
  }

  public void loadFeaturesFromFile(String filename) {
    try {
      BufferedReader reader = new BufferedReader(new FileReader(new File(filename)));
      String line = reader.readLine(); // ignore header
      while ((line = reader.readLine()) != null) {
        String[] parts = line.split("\t");
        int fid = Integer.parseInt(parts[0]);
        String name = parts[1];
        FeatureStatistics stat = new FeatureStatistics();
        stat.minValue = Double.parseDouble(parts[2]);
        stat.maxValue = Double.parseDouble(parts[3]);
        fid2statistics.put(fid, stat);
        fid2name.put(fid, name);
      }
    } catch (Exception e) {
      e.printStackTrace();
    }
    loadStatistics();
  }

  public void dumpStatistics(PrintStream output) {
    output.println("FeatureIndex" + "\tName\tMin" + "\tMax");
    Integer key = fid2statistics.firstKey();
    do {
      FeatureStatistics stat = fid2statistics.get(key);
      String name = fid2name.get(key);
      output.println(key + "\t" + name + "\t" + stat.minValue + "\t" + stat.maxValue);
    } while ((key = fid2statistics.higherKey(key)) != null);
  }

  public void printStatistics() {
    dumpStatistics(System.out);
  }
}
TOP

Related Classes of edu.uci.jforestsx.input.FeatureAnalyzer

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.