package com.metamx.collections.spatial;
import com.google.common.base.Preconditions;
import com.metamx.collections.bitmap.BitmapFactory;
import com.metamx.collections.bitmap.GenericBitmap;
import com.metamx.collections.spatial.split.LinearGutmanSplitStrategy;
import com.metamx.collections.spatial.split.SplitStrategy;
import java.util.Arrays;
/**
* This RTree has been optimized to work with bitmap inverted indexes.
* <p/>
* This code will probably make a lot more sense if you read:
* http://www.sai.msu.su/~megera/postgres/gist/papers/gutman-rtree.pdf
*/
public class RTree
{
private final int numDims;
private final SplitStrategy splitStrategy;
private Node root;
private final BitmapFactory bitmapFactory;
private volatile int size;
public RTree(BitmapFactory bitmapFactory)
{
this(0, new LinearGutmanSplitStrategy(0, 0, bitmapFactory), bitmapFactory);
}
public RTree(int numDims, SplitStrategy splitStrategy, BitmapFactory bitmapFactory)
{
this.numDims = numDims;
this.splitStrategy = splitStrategy;
this.bitmapFactory = bitmapFactory;
this.root = buildRoot(true);
}
public BitmapFactory getBitmapFactory()
{
return bitmapFactory;
}
/**
* This description is from the original paper.
* <p/>
* Algorithm Insert: Insert a new index entry E into an R-tree.
* <p/>
* I1. [Find position for new record]. Invoke {@link #chooseLeaf(Node, Point)} to select
* a leaf node L in which to place E.
* <p/>
* I2. [Add records to leaf node]. If L has room for another entry, install E. Otherwise invoke
* {@link SplitStrategy} split methods to obtain L and LL containing E and all the old entries of L.
* <p/>
* I3. [Propagate changes upward]. Invoke {@link #adjustTree(Node, Node)} on L, also passing LL if a split was
* performed.
* <p/>
* I4. [Grow tree taller]. If node split propagation caused the root to split, create a new record whose
* children are the two resulting nodes.
*
* @param coords - the coordinates of the entry
* @param entry - the integer to insert
*/
public void insert(float[] coords, int entry)
{
Preconditions.checkArgument(coords.length == numDims);
insertInner(new Point(coords, entry, bitmapFactory));
}
public void insert(float[] coords, GenericBitmap entry)
{
Preconditions.checkArgument(coords.length == numDims);
insertInner(new Point(coords, entry));
}
/**
* Not yet implemented.
*
* @param coords - the coordinates of the entry
* @param entry - the integer to insert
*
* @return - whether the operation completed successfully
*/
public boolean delete(double[] coords, int entry)
{
throw new UnsupportedOperationException();
}
public int getSize()
{
return size;
}
public int getNumDims()
{
return numDims;
}
public SplitStrategy getSplitStrategy()
{
return splitStrategy;
}
public Node getRoot()
{
return root;
}
private Node buildRoot(boolean isLeaf)
{
float[] initMinCoords = new float[numDims];
float[] initMaxCoords = new float[numDims];
Arrays.fill(initMinCoords, -Float.MAX_VALUE);
Arrays.fill(initMaxCoords, Float.MAX_VALUE);
return new Node(initMinCoords, initMaxCoords, isLeaf, bitmapFactory);
}
private void insertInner(Point point)
{
Node node = chooseLeaf(root, point);
node.addChild(point);
if (splitStrategy.needToSplit(node)) {
Node[] groups = splitStrategy.split(node);
adjustTree(groups[0], groups[1]);
} else {
adjustTree(node, null);
}
size++;
}
/**
* This description is from the original paper.
* <p/>
* Algorithm ChooseLeaf. Select a leaf node in which to place a new index entry E.
* <p/>
* CL1. [Initialize]. Set N to be the root node.
* <p/>
* CL2. [Leaf check]. If N is a leaf, return N.
* <p/>
* CL3. [Choose subtree]. If N is not a leaf, let F be the entry in N whose rectangle
* FI needs least enlargement to include EI. Resolve ties by choosing the entry with the rectangle
* of smallest area.
* <p/>
* CL4. [Descend until a leaf is reached]. Set N to be the child node pointed to by Fp and repeated from CL2.
*
* @param node - current node to evaluate
* @param point - point to insert
*
* @return - leafNode where point can be inserted
*/
private Node chooseLeaf(Node node, Point point)
{
node.addToInvertedIndex(point);
if (node.isLeaf()) {
return node;
}
double minCost = Double.MAX_VALUE;
Node optimal = node.getChildren().get(0); //was: null and slightly unsafe
for (Node child : node.getChildren()) {
double cost = RTreeUtils.getExpansionCost(child, point);
if (cost < minCost) {
minCost = cost;
optimal = child;
} else if (cost == minCost) {
// Resolve ties by choosing the entry with the rectangle of smallest area
if (child.getArea() < optimal.getArea()) {
optimal = child;
}
}
}
return chooseLeaf(optimal, point);
}
/**
* This description is from the original paper.
* <p/>
* AT1. [Initialize]. Set N=L. If L was split previously, set NN to be the resulting second node.
* <p/>
* AT2. [Check if done]. If N is the root, stop.
* <p/>
* AT3. [Adjust covering rectangle in parent entry]. Let P be the parent node of N, and let Ev(N)I be N's entry in P.
* Adjust Ev(N)I so that it tightly encloses all entry rectangles in N.
* <p/>
* AT4. [Propagate node split upward]. If N has a partner NN resulting from an earlier split, create a new entry
* Ev(NN) with Ev(NN)p pointing to NN and Ev(NN)I enclosing all rectangles in NN. Add Ev(NN) to p is there is room.
* Otherwise, invoke {@link SplitStrategy} split to product p and pp containing Ev(NN) and all p's old entries.
*
* @param n - first node to adjust
* @param nn - optional second node to adjust
*/
private void adjustTree(Node n, Node nn)
{
// special case for root
if (n == root) {
if (nn != null) {
root = buildRoot(false);
root.addChild(n);
root.addChild(nn);
}
root.enclose();
return;
}
boolean updateParent = n.enclose();
if (nn != null) {
nn.enclose();
updateParent = true;
if (splitStrategy.needToSplit(n.getParent())) {
Node[] groups = splitStrategy.split(n.getParent());
adjustTree(groups[0], groups[1]);
}
}
if (n.getParent() != null && updateParent) {
adjustTree(n.getParent(), null);
}
}
}