/*
* @(#)Lower.java 1.168 07/03/21
*
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
package com.sun.tools.javac.comp;
import java.util.*;
import com.sun.tools.javac.code.*;
import com.sun.tools.javac.jvm.*;
import com.sun.tools.javac.tree.*;
import com.sun.tools.javac.util.*;
import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
import com.sun.tools.javac.util.List;
import com.sun.tools.javac.code.Symbol.*;
import com.sun.tools.javac.tree.JCTree.*;
import com.sun.tools.javac.code.Type.*;
import com.sun.tools.javac.jvm.Target;
import static com.sun.tools.javac.code.Flags.*;
import static com.sun.tools.javac.code.Kinds.*;
import static com.sun.tools.javac.code.TypeTags.*;
import static com.sun.tools.javac.jvm.ByteCodes.*;
/** This pass translates away some syntactic sugar: inner classes,
* class literals, assertions, foreach loops, etc.
*
* <p><b>This is NOT part of any API supported by Sun Microsystems. If
* you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.</b>
*/
@Version("@(#)Lower.java 1.168 07/03/21")
public class Lower extends TreeTranslator {
protected static final Context.Key<Lower> lowerKey =
new Context.Key<Lower>();
public static Lower instance(Context context) {
Lower instance = context.get(lowerKey);
if (instance == null)
instance = new Lower(context);
return instance;
}
private Name.Table names;
private Log log;
private Symtab syms;
private Resolve rs;
private Check chk;
private Attr attr;
private TreeMaker make;
private DiagnosticPosition make_pos;
private ClassWriter writer;
private ClassReader reader;
private ConstFold cfolder;
private Target target;
private Source source;
private boolean allowEnums;
private final Name dollarAssertionsDisabled;
private final Name classDollar;
private Types types;
private boolean debugLower;
protected Lower(Context context) {
context.put(lowerKey, this);
names = Name.Table.instance(context);
log = Log.instance(context);
syms = Symtab.instance(context);
rs = Resolve.instance(context);
chk = Check.instance(context);
attr = Attr.instance(context);
make = TreeMaker.instance(context);
writer = ClassWriter.instance(context);
reader = ClassReader.instance(context);
cfolder = ConstFold.instance(context);
target = Target.instance(context);
source = Source.instance(context);
allowEnums = source.allowEnums();
dollarAssertionsDisabled = names.
fromString(target.syntheticNameChar() + "assertionsDisabled");
classDollar = names.
fromString("class" + target.syntheticNameChar());
types = Types.instance(context);
Options options = Options.instance(context);
debugLower = options.get("debuglower") != null;
}
/** The currently enclosing class.
*/
ClassSymbol currentClass;
/** A queue of all translated classes.
*/
ListBuffer<JCTree> translated;
/** Environment for symbol lookup, set by translateTopLevelClass.
*/
Env<AttrContext> attrEnv;
/** A hash table mapping syntax trees to their ending source positions.
*/
Map<JCTree, Integer> endPositions;
/**************************************************************************
* Global mappings
*************************************************************************/
/** A hash table mapping local classes to their definitions.
*/
Map<ClassSymbol, JCClassDecl> classdefs;
/** A hash table mapping virtual accessed symbols in outer subclasses
* to the actually referred symbol in superclasses.
*/
Map<Symbol,Symbol> actualSymbols;
/** The current method definition.
*/
JCMethodDecl currentMethodDef;
/** The current method symbol.
*/
MethodSymbol currentMethodSym;
/** The currently enclosing outermost class definition.
*/
JCClassDecl outermostClassDef;
/** The currently enclosing outermost member definition.
*/
JCTree outermostMemberDef;
/** A navigator class for assembling a mapping from local class symbols
* to class definition trees.
* There is only one case; all other cases simply traverse down the tree.
*/
class ClassMap extends TreeScanner {
/** All encountered class defs are entered into classdefs table.
*/
public void visitClassDef(JCClassDecl tree) {
classdefs.put(tree.sym, tree);
super.visitClassDef(tree);
}
}
ClassMap classMap = new ClassMap();
/** Map a class symbol to its definition.
* @param c The class symbol of which we want to determine the definition.
*/
JCClassDecl classDef(ClassSymbol c) {
// First lookup the class in the classdefs table.
JCClassDecl def = classdefs.get(c);
if (def == null && outermostMemberDef != null) {
// If this fails, traverse outermost member definition, entering all
// local classes into classdefs, and try again.
classMap.scan(outermostMemberDef);
def = classdefs.get(c);
}
if (def == null) {
// If this fails, traverse outermost class definition, entering all
// local classes into classdefs, and try again.
classMap.scan(outermostClassDef);
def = classdefs.get(c);
}
return def;
}
/** A hash table mapping class symbols to lists of free variables.
* accessed by them. Only free variables of the method immediately containing
* a class are associated with that class.
*/
Map<ClassSymbol,List<VarSymbol>> freevarCache;
/** A navigator class for collecting the free variables accessed
* from a local class.
* There is only one case; all other cases simply traverse down the tree.
*/
class FreeVarCollector extends TreeScanner {
/** The owner of the local class.
*/
Symbol owner;
/** The local class.
*/
ClassSymbol clazz;
/** The list of owner's variables accessed from within the local class,
* without any duplicates.
*/
List<VarSymbol> fvs;
FreeVarCollector(ClassSymbol clazz) {
this.clazz = clazz;
this.owner = clazz.owner;
this.fvs = List.nil();
}
/** Add free variable to fvs list unless it is already there.
*/
private void addFreeVar(VarSymbol v) {
for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
if (l.head == v) return;
fvs = fvs.prepend(v);
}
/** Add all free variables of class c to fvs list
* unless they are already there.
*/
private void addFreeVars(ClassSymbol c) {
List<VarSymbol> fvs = freevarCache.get(c);
if (fvs != null) {
for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
addFreeVar(l.head);
}
}
}
/** If tree refers to a variable in owner of local class, add it to
* free variables list.
*/
public void visitIdent(JCIdent tree) {
result = tree;
visitSymbol(tree.sym);
}
// where
private void visitSymbol(Symbol _sym) {
Symbol sym = _sym;
if (sym.kind == VAR || sym.kind == MTH) {
while (sym != null && sym.owner != owner)
sym = proxies.lookup(proxyName(sym.name)).sym;
if (sym != null && sym.owner == owner) {
VarSymbol v = (VarSymbol)sym;
if (v.getConstValue() == null) {
addFreeVar(v);
}
} else {
if (outerThisStack.head != null &&
outerThisStack.head != _sym)
visitSymbol(outerThisStack.head);
}
}
}
/** If tree refers to a class instance creation expression
* add all free variables of the freshly created class.
*/
public void visitNewClass(JCNewClass tree) {
ClassSymbol c = (ClassSymbol)tree.constructor.owner;
addFreeVars(c);
if (tree.encl == null &&
c.hasOuterInstance() &&
outerThisStack.head != null)
visitSymbol(outerThisStack.head);
super.visitNewClass(tree);
}
/** If tree refers to a qualified this or super expression
* for anything but the current class, add the outer this
* stack as a free variable.
*/
public void visitSelect(JCFieldAccess tree) {
if ((tree.name == names._this || tree.name == names._super) &&
tree.selected.type.tsym != clazz &&
outerThisStack.head != null)
visitSymbol(outerThisStack.head);
super.visitSelect(tree);
}
/** If tree refers to a superclass constructor call,
* add all free variables of the superclass.
*/
public void visitApply(JCMethodInvocation tree) {
if (TreeInfo.name(tree.meth) == names._super) {
addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
Symbol constructor = TreeInfo.symbol(tree.meth);
ClassSymbol c = (ClassSymbol)constructor.owner;
if (c.hasOuterInstance() &&
tree.meth.tag != JCTree.SELECT &&
outerThisStack.head != null)
visitSymbol(outerThisStack.head);
}
super.visitApply(tree);
}
}
/** Return the variables accessed from within a local class, which
* are declared in the local class' owner.
* (in reverse order of first access).
*/
List<VarSymbol> freevars(ClassSymbol c) {
if ((c.owner.kind & (VAR | MTH)) != 0) {
List<VarSymbol> fvs = freevarCache.get(c);
if (fvs == null) {
FreeVarCollector collector = new FreeVarCollector(c);
collector.scan(classDef(c));
fvs = collector.fvs;
freevarCache.put(c, fvs);
}
return fvs;
} else {
return List.nil();
}
}
Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
EnumMapping map = enumSwitchMap.get(enumClass);
if (map == null)
enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
return map;
}
/** This map gives a translation table to be used for enum
* switches.
*
* <p>For each enum that appears as the type of a switch
* expression, we maintain an EnumMapping to assist in the
* translation, as exemplified by the following example:
*
* <p>we translate
* <pre>
* switch(colorExpression) {
* case red: stmt1;
* case green: stmt2;
* }
* </pre>
* into
* <pre>
* switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
* case 1: stmt1;
* case 2: stmt2
* }
* </pre>
* with the auxilliary table intialized as follows:
* <pre>
* class Outer$0 {
* synthetic final int[] $EnumMap$Color = new int[Color.values().length];
* static {
* try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
* try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
* }
* }
* </pre>
* class EnumMapping provides mapping data and support methods for this translation.
*/
class EnumMapping {
EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
this.forEnum = forEnum;
this.values = new LinkedHashMap<VarSymbol,Integer>();
this.pos = pos;
Name varName = names
.fromString(target.syntheticNameChar() +
"SwitchMap" +
target.syntheticNameChar() +
writer.xClassName(forEnum.type).toString()
.replace('/', '.')
.replace('.', target.syntheticNameChar()));
ClassSymbol outerCacheClass = outerCacheClass();
this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
varName,
new ArrayType(syms.intType, syms.arrayClass),
outerCacheClass);
enterSynthetic(pos, mapVar, outerCacheClass.members());
}
DiagnosticPosition pos = null;
// the next value to use
int next = 1; // 0 (unused map elements) go to the default label
// the enum for which this is a map
final TypeSymbol forEnum;
// the field containing the map
final VarSymbol mapVar;
// the mapped values
final Map<VarSymbol,Integer> values;
JCLiteral forConstant(VarSymbol v) {
Integer result = values.get(v);
if (result == null)
values.put(v, result = next++);
return make.Literal(result);
}
// generate the field initializer for the map
void translate() {
make.at(pos.getStartPosition());
JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
// synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
MethodSymbol valuesMethod = lookupMethod(pos,
names.values,
forEnum.type,
List.<Type>nil());
JCExpression size = make // Color.values().length
.Select(make.App(make.QualIdent(valuesMethod)),
syms.lengthVar);
JCExpression mapVarInit = make
.NewArray(make.Type(syms.intType), List.of(size), null)
.setType(new ArrayType(syms.intType, syms.arrayClass));
// try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
Symbol ordinalMethod = lookupMethod(pos,
names.ordinal,
forEnum.type,
List.<Type>nil());
List<JCCatch> catcher = List.<JCCatch>nil()
.prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
syms.noSuchFieldErrorType,
syms.noSymbol),
null),
make.Block(0, List.<JCStatement>nil())));
for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
VarSymbol enumerator = e.getKey();
Integer mappedValue = e.getValue();
JCExpression assign = make
.Assign(make.Indexed(mapVar,
make.App(make.Select(make.QualIdent(enumerator),
ordinalMethod))),
make.Literal(mappedValue))
.setType(syms.intType);
JCStatement exec = make.Exec(assign);
JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
stmts.append(_try);
}
owner.defs = owner.defs
.prepend(make.Block(STATIC, stmts.toList()))
.prepend(make.VarDef(mapVar, mapVarInit));
}
}
/**************************************************************************
* Tree building blocks
*************************************************************************/
/** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
* pos as make_pos, for use in diagnostics.
**/
TreeMaker make_at(DiagnosticPosition pos) {
make_pos = pos;
return make.at(pos);
}
/** Make an attributed tree representing a literal. This will be an
* Ident node in the case of boolean literals, a Literal node in all
* other cases.
* @param type The literal's type.
* @param value The literal's value.
*/
JCExpression makeLit(Type type, Object value) {
return make.Literal(type.tag, value).setType(type.constType(value));
}
/** Make an attributed tree representing null.
*/
JCExpression makeNull() {
return makeLit(syms.botType, null);
}
/** Make an attributed class instance creation expression.
* @param ctype The class type.
* @param args The constructor arguments.
*/
JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
JCNewClass tree = make.NewClass(null,
null, make.QualIdent(ctype.tsym), args, null);
tree.constructor = rs.resolveConstructor(
make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
tree.type = ctype;
return tree;
}
/** Make an attributed unary expression.
* @param optag The operators tree tag.
* @param arg The operator's argument.
*/
JCUnary makeUnary(int optag, JCExpression arg) {
JCUnary tree = make.Unary(optag, arg);
tree.operator = rs.resolveUnaryOperator(
make_pos, optag, attrEnv, arg.type);
tree.type = tree.operator.type.getReturnType();
return tree;
}
/** Make an attributed binary expression.
* @param optag The operators tree tag.
* @param lhs The operator's left argument.
* @param rhs The operator's right argument.
*/
JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
JCBinary tree = make.Binary(optag, lhs, rhs);
tree.operator = rs.resolveBinaryOperator(
make_pos, optag, attrEnv, lhs.type, rhs.type);
tree.type = tree.operator.type.getReturnType();
return tree;
}
/** Make an attributed assignop expression.
* @param optag The operators tree tag.
* @param lhs The operator's left argument.
* @param rhs The operator's right argument.
*/
JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
JCAssignOp tree = make.Assignop(optag, lhs, rhs);
tree.operator = rs.resolveBinaryOperator(
make_pos, tree.tag - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
tree.type = lhs.type;
return tree;
}
/** Convert tree into string object, unless it has already a
* reference type..
*/
JCExpression makeString(JCExpression tree) {
if (tree.type.tag >= CLASS) {
return tree;
} else {
Symbol valueOfSym = lookupMethod(tree.pos(),
names.valueOf,
syms.stringType,
List.of(tree.type));
return make.App(make.QualIdent(valueOfSym), List.of(tree));
}
}
/** Create an empty anonymous class definition and enter and complete
* its symbol. Return the class definition's symbol.
* and create
* @param flags The class symbol's flags
* @param owner The class symbol's owner
*/
ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
// Create class symbol.
ClassSymbol c = reader.defineClass(names.empty, owner);
c.flatname = chk.localClassName(c);
c.sourcefile = owner.sourcefile;
c.completer = null;
c.members_field = new Scope(c);
c.flags_field = flags;
ClassType ctype = (ClassType) c.type;
ctype.supertype_field = syms.objectType;
ctype.interfaces_field = List.nil();
JCClassDecl odef = classDef(owner);
// Enter class symbol in owner scope and compiled table.
enterSynthetic(odef.pos(), c, owner.members());
chk.compiled.put(c.flatname, c);
// Create class definition tree.
JCClassDecl cdef = make.ClassDef(
make.Modifiers(flags), names.empty,
List.<JCTypeParameter>nil(),
null, List.<JCExpression>nil(), List.<JCTree>nil());
cdef.sym = c;
cdef.type = c.type;
// Append class definition tree to owner's definitions.
odef.defs = odef.defs.prepend(cdef);
return c;
}
/**************************************************************************
* Symbol manipulation utilities
*************************************************************************/
/** Report a conflict between a user symbol and a synthetic symbol.
*/
private void duplicateError(DiagnosticPosition pos, Symbol sym) {
if (!sym.type.isErroneous()) {
log.error(pos, "synthetic.name.conflict", sym, sym.location());
}
}
/** Enter a synthetic symbol in a given scope, but complain if there was already one there.
* @param pos Position for error reporting.
* @param sym The symbol.
* @param s The scope.
*/
private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
if (sym.name != names.error && sym.name != names.empty) {
for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
if (sym != e.sym && sym.kind == e.sym.kind) {
// VM allows methods and variables with differing types
if ((sym.kind & (MTH|VAR)) != 0 &&
!types.erasure(sym.type).equals(types.erasure(e.sym.type)))
continue;
duplicateError(pos, e.sym);
break;
}
}
}
s.enter(sym);
}
/** Look up a synthetic name in a given scope.
* @param scope The scope.
* @param name The name.
*/
private Symbol lookupSynthetic(Name name, Scope s) {
Symbol sym = s.lookup(name).sym;
return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
}
/** Look up a method in a given scope.
*/
private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
}
/** Look up a constructor.
*/
private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
}
/** Look up a field.
*/
private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
return rs.resolveInternalField(pos, attrEnv, qual, name);
}
/**************************************************************************
* Access methods
*************************************************************************/
/** Access codes for dereferencing, assignment,
* and pre/post increment/decrement.
* Access codes for assignment operations are determined by method accessCode
* below.
*
* All access codes for accesses to the current class are even.
* If a member of the superclass should be accessed instead (because
* access was via a qualified super), add one to the corresponding code
* for the current class, making the number odd.
* This numbering scheme is used by the backend to decide whether
* to issue an invokevirtual or invokespecial call.
*
* @see Gen.visitSelect(Select tree)
*/
private static final int
DEREFcode = 0,
ASSIGNcode = 2,
PREINCcode = 4,
PREDECcode = 6,
POSTINCcode = 8,
POSTDECcode = 10,
FIRSTASGOPcode = 12;
/** Number of access codes
*/
private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
/** A mapping from symbols to their access numbers.
*/
private Map<Symbol,Integer> accessNums;
/** A mapping from symbols to an array of access symbols, indexed by
* access code.
*/
private Map<Symbol,MethodSymbol[]> accessSyms;
/** A mapping from (constructor) symbols to access constructor symbols.
*/
private Map<Symbol,MethodSymbol> accessConstrs;
/** A queue for all accessed symbols.
*/
private ListBuffer<Symbol> accessed;
/** Map bytecode of binary operation to access code of corresponding
* assignment operation. This is always an even number.
*/
private static int accessCode(int bytecode) {
if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
return (bytecode - iadd) * 2 + FIRSTASGOPcode;
else if (bytecode == ByteCodes.string_add)
return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
else
return -1;
}
/** return access code for identifier,
* @param tree The tree representing the identifier use.
* @param enclOp The closest enclosing operation node of tree,
* null if tree is not a subtree of an operation.
*/
private static int accessCode(JCTree tree, JCTree enclOp) {
if (enclOp == null)
return DEREFcode;
else if (enclOp.tag == JCTree.ASSIGN &&
tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
return ASSIGNcode;
else if (JCTree.PREINC <= enclOp.tag && enclOp.tag <= JCTree.POSTDEC &&
tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
return (enclOp.tag - JCTree.PREINC) * 2 + PREINCcode;
else if (JCTree.BITOR_ASG <= enclOp.tag && enclOp.tag <= JCTree.MOD_ASG &&
tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
else
return DEREFcode;
}
/** Return binary operator that corresponds to given access code.
*/
private OperatorSymbol binaryAccessOperator(int acode) {
for (Scope.Entry e = syms.predefClass.members().elems;
e != null;
e = e.sibling) {
if (e.sym instanceof OperatorSymbol) {
OperatorSymbol op = (OperatorSymbol)e.sym;
if (accessCode(op.opcode) == acode) return op;
}
}
return null;
}
/** Return tree tag for assignment operation corresponding
* to given binary operator.
*/
private static int treeTag(OperatorSymbol operator) {
switch (operator.opcode) {
case ByteCodes.ior: case ByteCodes.lor:
return JCTree.BITOR_ASG;
case ByteCodes.ixor: case ByteCodes.lxor:
return JCTree.BITXOR_ASG;
case ByteCodes.iand: case ByteCodes.land:
return JCTree.BITAND_ASG;
case ByteCodes.ishl: case ByteCodes.lshl:
case ByteCodes.ishll: case ByteCodes.lshll:
return JCTree.SL_ASG;
case ByteCodes.ishr: case ByteCodes.lshr:
case ByteCodes.ishrl: case ByteCodes.lshrl:
return JCTree.SR_ASG;
case ByteCodes.iushr: case ByteCodes.lushr:
case ByteCodes.iushrl: case ByteCodes.lushrl:
return JCTree.USR_ASG;
case ByteCodes.iadd: case ByteCodes.ladd:
case ByteCodes.fadd: case ByteCodes.dadd:
case ByteCodes.string_add:
return JCTree.PLUS_ASG;
case ByteCodes.isub: case ByteCodes.lsub:
case ByteCodes.fsub: case ByteCodes.dsub:
return JCTree.MINUS_ASG;
case ByteCodes.imul: case ByteCodes.lmul:
case ByteCodes.fmul: case ByteCodes.dmul:
return JCTree.MUL_ASG;
case ByteCodes.idiv: case ByteCodes.ldiv:
case ByteCodes.fdiv: case ByteCodes.ddiv:
return JCTree.DIV_ASG;
case ByteCodes.imod: case ByteCodes.lmod:
case ByteCodes.fmod: case ByteCodes.dmod:
return JCTree.MOD_ASG;
default:
throw new AssertionError();
}
}
/** The name of the access method with number `anum' and access code `acode'.
*/
Name accessName(int anum, int acode) {
return names.fromString(
"access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
}
/** Return access symbol for a private or protected symbol from an inner class.
* @param sym The accessed private symbol.
* @param tree The accessing tree.
* @param enclOp The closest enclosing operation node of tree,
* null if tree is not a subtree of an operation.
* @param protAccess Is access to a protected symbol in another
* package?
* @param refSuper Is access via a (qualified) C.super?
*/
MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
boolean protAccess, boolean refSuper) {
ClassSymbol accOwner = refSuper && protAccess
// For access via qualified super (T.super.x), place the
// access symbol on T.
? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
// Otherwise pretend that the owner of an accessed
// protected symbol is the enclosing class of the current
// class which is a subclass of the symbol's owner.
: accessClass(sym, protAccess, tree);
Symbol vsym = sym;
if (sym.owner != accOwner) {
vsym = sym.clone(accOwner);
actualSymbols.put(vsym, sym);
}
Integer anum // The access number of the access method.
= accessNums.get(vsym);
if (anum == null) {
anum = accessed.length();
accessNums.put(vsym, anum);
accessSyms.put(vsym, new MethodSymbol[NCODES]);
accessed.append(vsym);
// System.out.println("accessing " + vsym + " in " + vsym.location());
}
int acode; // The access code of the access method.
List<Type> argtypes; // The argument types of the access method.
Type restype; // The result type of the access method.
List<Type> thrown; // The thrown execeptions of the access method.
switch (vsym.kind) {
case VAR:
acode = accessCode(tree, enclOp);
if (acode >= FIRSTASGOPcode) {
OperatorSymbol operator = binaryAccessOperator(acode);
if (operator.opcode == string_add)
argtypes = List.of(syms.objectType);
else
argtypes = operator.type.getParameterTypes().tail;
} else if (acode == ASSIGNcode)
argtypes = List.of(vsym.erasure(types));
else
argtypes = List.nil();
restype = vsym.erasure(types);
thrown = List.nil();
break;
case MTH:
acode = DEREFcode;
argtypes = vsym.erasure(types).getParameterTypes();
restype = vsym.erasure(types).getReturnType();
thrown = vsym.type.getThrownTypes();
break;
default:
throw new AssertionError();
}
// For references via qualified super, increment acode by one,
// making it odd.
if (protAccess && refSuper) acode++;
// Instance access methods get instance as first parameter.
// For protected symbols this needs to be the instance as a member
// of the type containing the accessed symbol, not the class
// containing the access method.
if ((vsym.flags() & STATIC) == 0) {
argtypes = argtypes.prepend(vsym.owner.erasure(types));
}
MethodSymbol[] accessors = accessSyms.get(vsym);
MethodSymbol accessor = accessors[acode];
if (accessor == null) {
accessor = new MethodSymbol(
STATIC | SYNTHETIC,
accessName(anum.intValue(), acode),
new MethodType(argtypes, restype, thrown, syms.methodClass),
accOwner);
enterSynthetic(tree.pos(), accessor, accOwner.members());
accessors[acode] = accessor;
}
return accessor;
}
/** The qualifier to be used for accessing a symbol in an outer class.
* This is either C.sym or C.this.sym, depending on whether or not
* sym is static.
* @param sym The accessed symbol.
*/
JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
return (sym.flags() & STATIC) != 0
? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
: makeOwnerThis(pos, sym, true);
}
/** Do we need an access method to reference private symbol?
*/
boolean needsPrivateAccess(Symbol sym) {
if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
return false;
} else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
// private constructor in local class: relax protection
sym.flags_field &= ~PRIVATE;
return false;
} else {
return true;
}
}
/** Do we need an access method to reference symbol in other package?
*/
boolean needsProtectedAccess(Symbol sym, JCTree tree) {
if ((sym.flags() & PROTECTED) == 0 ||
sym.owner.owner == currentClass.owner || // fast special case
sym.packge() == currentClass.packge())
return false;
if (!currentClass.isSubClass(sym.owner, types))
return true;
if ((sym.flags() & STATIC) != 0 ||
tree.tag != JCTree.SELECT ||
TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
return false;
return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
}
/** The class in which an access method for given symbol goes.
* @param sym The access symbol
* @param protAccess Is access to a protected symbol in another
* package?
*/
ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
if (protAccess) {
Symbol qualifier = null;
ClassSymbol c = currentClass;
if (tree.tag == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
qualifier = ((JCFieldAccess) tree).selected.type.tsym;
while (!qualifier.isSubClass(c, types)) {
c = c.owner.enclClass();
}
return c;
} else {
while (!c.isSubClass(sym.owner, types)) {
c = c.owner.enclClass();
}
}
return c;
} else {
// the symbol is private
return sym.owner.enclClass();
}
}
/** Ensure that identifier is accessible, return tree accessing the identifier.
* @param sym The accessed symbol.
* @param tree The tree referring to the symbol.
* @param enclOp The closest enclosing operation node of tree,
* null if tree is not a subtree of an operation.
* @param refSuper Is access via a (qualified) C.super?
*/
JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
// Access a free variable via its proxy, or its proxy's proxy
while (sym.kind == VAR && sym.owner.kind == MTH &&
sym.owner.enclClass() != currentClass) {
// A constant is replaced by its constant value.
Object cv = ((VarSymbol)sym).getConstValue();
if (cv != null) {
make.at(tree.pos);
return makeLit(sym.type, cv);
}
// Otherwise replace the variable by its proxy.
sym = proxies.lookup(proxyName(sym.name)).sym;
assert sym != null && (sym.flags_field & FINAL) != 0;
tree = make.at(tree.pos).Ident(sym);
}
JCExpression base = (tree.tag == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
switch (sym.kind) {
case TYP:
if (sym.owner.kind != PCK) {
// Convert type idents to
// <flat name> or <package name> . <flat name>
Name flatname = Convert.shortName(sym.flatName());
while (base != null &&
TreeInfo.symbol(base) != null &&
TreeInfo.symbol(base).kind != PCK) {
base = (base.tag == JCTree.SELECT)
? ((JCFieldAccess) base).selected
: null;
}
if (tree.tag == JCTree.IDENT) {
((JCIdent) tree).name = flatname;
} else if (base == null) {
tree = make.at(tree.pos).Ident(sym);
((JCIdent) tree).name = flatname;
} else {
((JCFieldAccess) tree).selected = base;
((JCFieldAccess) tree).name = flatname;
}
}
break;
case MTH: case VAR:
if (sym.owner.kind == TYP) {
// Access methods are required for
// - private members,
// - protected members in a superclass of an
// enclosing class contained in another package.
// - all non-private members accessed via a qualified super.
boolean protAccess = refSuper && !needsPrivateAccess(sym)
|| needsProtectedAccess(sym, tree);
boolean accReq = protAccess || needsPrivateAccess(sym);
// A base has to be supplied for
// - simple identifiers accessing variables in outer classes.
boolean baseReq =
base == null &&
sym.owner != syms.predefClass &&
!sym.isMemberOf(currentClass, types);
if (accReq || baseReq) {
make.at(tree.pos);
// Constants are replaced by their constant value.
if (sym.kind == VAR) {
Object cv = ((VarSymbol)sym).getConstValue();
if (cv != null) return makeLit(sym.type, cv);
}
// Private variables and methods are replaced by calls
// to their access methods.
if (accReq) {
List<JCExpression> args = List.nil();
if ((sym.flags() & STATIC) == 0) {
// Instance access methods get instance
// as first parameter.
if (base == null)
base = makeOwnerThis(tree.pos(), sym, true);
args = args.prepend(base);
base = null; // so we don't duplicate code
}
Symbol access = accessSymbol(sym, tree,
enclOp, protAccess,
refSuper);
JCExpression receiver = make.Select(
base != null ? base : make.QualIdent(access.owner),
access);
return make.App(receiver, args);
// Other accesses to members of outer classes get a
// qualifier.
} else if (baseReq) {
return make.at(tree.pos).Select(
accessBase(tree.pos(), sym), sym).setType(tree.type);
}
}
}
}
return tree;
}
/** Ensure that identifier is accessible, return tree accessing the identifier.
* @param tree The identifier tree.
*/
JCExpression access(JCExpression tree) {
Symbol sym = TreeInfo.symbol(tree);
return sym == null ? tree : access(sym, tree, null, false);
}
/** Return access constructor for a private constructor,
* or the constructor itself, if no access constructor is needed.
* @param pos The position to report diagnostics, if any.
* @param constr The private constructor.
*/
Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
if (needsPrivateAccess(constr)) {
ClassSymbol accOwner = constr.owner.enclClass();
MethodSymbol aconstr = accessConstrs.get(constr);
if (aconstr == null) {
List<Type> argtypes = constr.type.getParameterTypes();
if ((accOwner.flags_field & ENUM) != 0)
argtypes = argtypes
.prepend(syms.intType)
.prepend(syms.stringType);
aconstr = new MethodSymbol(
SYNTHETIC,
names.init,
new MethodType(
argtypes.append(
accessConstructorTag().erasure(types)),
constr.type.getReturnType(),
constr.type.getThrownTypes(),
syms.methodClass),
accOwner);
enterSynthetic(pos, aconstr, accOwner.members());
accessConstrs.put(constr, aconstr);
accessed.append(constr);
}
return aconstr;
} else {
return constr;
}
}
/** Return an anonymous class nested in this toplevel class.
*/
ClassSymbol accessConstructorTag() {
ClassSymbol topClass = currentClass.outermostClass();
Name flatname = names.fromString("" + topClass.getQualifiedName() +
target.syntheticNameChar() +
"1");
ClassSymbol ctag = chk.compiled.get(flatname);
if (ctag == null)
ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
return ctag;
}
/** Add all required access methods for a private symbol to enclosing class.
* @param sym The symbol.
*/
void makeAccessible(Symbol sym) {
JCClassDecl cdef = classDef(sym.owner.enclClass());
assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
if (sym.name == names.init) {
cdef.defs = cdef.defs.prepend(
accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
} else {
MethodSymbol[] accessors = accessSyms.get(sym);
for (int i = 0; i < NCODES; i++) {
if (accessors[i] != null)
cdef.defs = cdef.defs.prepend(
accessDef(cdef.pos, sym, accessors[i], i));
}
}
}
/** Construct definition of an access method.
* @param pos The source code position of the definition.
* @param vsym The private or protected symbol.
* @param accessor The access method for the symbol.
* @param acode The access code.
*/
JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
// System.err.println("access " + vsym + " with " + accessor);//DEBUG
currentClass = vsym.owner.enclClass();
make.at(pos);
JCMethodDecl md = make.MethodDef(accessor, null);
// Find actual symbol
Symbol sym = actualSymbols.get(vsym);
if (sym == null) sym = vsym;
JCExpression ref; // The tree referencing the private symbol.
List<JCExpression> args; // Any additional arguments to be passed along.
if ((sym.flags() & STATIC) != 0) {
ref = make.Ident(sym);
args = make.Idents(md.params);
} else {
ref = make.Select(make.Ident(md.params.head), sym);
args = make.Idents(md.params.tail);
}
JCStatement stat; // The statement accessing the private symbol.
if (sym.kind == VAR) {
// Normalize out all odd access codes by taking floor modulo 2:
int acode1 = acode - (acode & 1);
JCExpression expr; // The access method's return value.
switch (acode1) {
case DEREFcode:
expr = ref;
break;
case ASSIGNcode:
expr = make.Assign(ref, args.head);
break;
case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
expr = makeUnary(
((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
break;
default:
expr = make.Assignop(
treeTag(binaryAccessOperator(acode1)), ref, args.head);
((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
}
stat = make.Return(expr.setType(sym.type));
} else {
stat = make.Call(make.App(ref, args));
}
md.body = make.Block(0, List.of(stat));
// Make sure all parameters, result types and thrown exceptions
// are accessible.
for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
l.head.vartype = access(l.head.vartype);
md.restype = access(md.restype);
for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
l.head = access(l.head);
return md;
}
/** Construct definition of an access constructor.
* @param pos The source code position of the definition.
* @param constr The private constructor.
* @param accessor The access method for the constructor.
*/
JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
make.at(pos);
JCMethodDecl md = make.MethodDef(accessor,
accessor.externalType(types),
null);
JCIdent callee = make.Ident(names._this);
callee.sym = constr;
callee.type = constr.type;
md.body =
make.Block(0, List.<JCStatement>of(
make.Call(
make.App(
callee,
make.Idents(md.params.reverse().tail.reverse())))));
return md;
}
/**************************************************************************
* Free variables proxies and this$n
*************************************************************************/
/** A scope containing all free variable proxies for currently translated
* class, as well as its this$n symbol (if needed).
* Proxy scopes are nested in the same way classes are.
* Inside a constructor, proxies and any this$n symbol are duplicated
* in an additional innermost scope, where they represent the constructor
* parameters.
*/
Scope proxies;
/** A stack containing the this$n field of the currently translated
* classes (if needed) in innermost first order.
* Inside a constructor, proxies and any this$n symbol are duplicated
* in an additional innermost scope, where they represent the constructor
* parameters.
*/
List<VarSymbol> outerThisStack;
/** The name of a free variable proxy.
*/
Name proxyName(Name name) {
return names.fromString("val" + target.syntheticNameChar() + name);
}
/** Proxy definitions for all free variables in given list, in reverse order.
* @param pos The source code position of the definition.
* @param freevars The free variables.
* @param owner The class in which the definitions go.
*/
List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
long flags = FINAL | SYNTHETIC;
if (owner.kind == TYP &&
target.usePrivateSyntheticFields())
flags |= PRIVATE;
List<JCVariableDecl> defs = List.nil();
for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
VarSymbol v = l.head;
VarSymbol proxy = new VarSymbol(
flags, proxyName(v.name), v.erasure(types), owner);
proxies.enter(proxy);
JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
vd.vartype = access(vd.vartype);
defs = defs.prepend(vd);
}
return defs;
}
/** The name of a this$n field
* @param type The class referenced by the this$n field
*/
Name outerThisName(Type type, Symbol owner) {
Type t = type.getEnclosingType();
int nestingLevel = 0;
while (t.tag == CLASS) {
t = t.getEnclosingType();
nestingLevel++;
}
Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
result = names.fromString(result.toString() + target.syntheticNameChar());
return result;
}
/** Definition for this$n field.
* @param pos The source code position of the definition.
* @param owner The class in which the definition goes.
*/
JCVariableDecl outerThisDef(int pos, Symbol owner) {
long flags = FINAL | SYNTHETIC;
if (owner.kind == TYP &&
target.usePrivateSyntheticFields())
flags |= PRIVATE;
Type target = types.erasure(owner.enclClass().type.getEnclosingType());
VarSymbol outerThis = new VarSymbol(
flags, outerThisName(target, owner), target, owner);
outerThisStack = outerThisStack.prepend(outerThis);
JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
vd.vartype = access(vd.vartype);
return vd;
}
/** Return a list of trees that load the free variables in given list,
* in reverse order.
* @param pos The source code position to be used for the trees.
* @param freevars The list of free variables.
*/
List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
List<JCExpression> args = List.nil();
for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
args = args.prepend(loadFreevar(pos, l.head));
return args;
}
//where
JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
return access(v, make.at(pos).Ident(v), null, false);
}
/** Construct a tree simulating the expression <C.this>.
* @param pos The source code position to be used for the tree.
* @param c The qualifier class.
*/
JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
if (currentClass == c) {
// in this case, `this' works fine
return make.at(pos).This(c.erasure(types));
} else {
// need to go via this$n
return makeOuterThis(pos, c);
}
}
/** Construct a tree that represents the outer instance
* <C.this>. Never pick the current `this'.
* @param pos The source code position to be used for the tree.
* @param c The qualifier class.
*/
JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
List<VarSymbol> ots = outerThisStack;
if (ots.isEmpty()) {
log.error(pos, "no.encl.instance.of.type.in.scope", c);
assert false;
return makeNull();
}
VarSymbol ot = ots.head;
JCExpression tree = access(make.at(pos).Ident(ot));
TypeSymbol otc = ot.type.tsym;
while (otc != c) {
do {
ots = ots.tail;
if (ots.isEmpty()) {
log.error(pos,
"no.encl.instance.of.type.in.scope",
c);
assert false; // should have been caught in Attr
return tree;
}
ot = ots.head;
} while (ot.owner != otc);
if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
chk.earlyRefError(pos, c);
assert false; // should have been caught in Attr
return makeNull();
}
tree = access(make.at(pos).Select(tree, ot));
otc = ot.type.tsym;
}
return tree;
}
/** Construct a tree that represents the closest outer instance
* <C.this> such that the given symbol is a member of C.
* @param pos The source code position to be used for the tree.
* @param sym The accessed symbol.
* @param preciseMatch should we accept a type that is a subtype of
* sym's owner, even if it doesn't contain sym
* due to hiding, overriding, or non-inheritance
* due to protection?
*/
JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
Symbol c = sym.owner;
if (preciseMatch ? sym.isMemberOf(currentClass, types)
: currentClass.isSubClass(sym.owner, types)) {
// in this case, `this' works fine
return make.at(pos).This(c.erasure(types));
} else {
// need to go via this$n
return makeOwnerThisN(pos, sym, preciseMatch);
}
}
/**
* Similar to makeOwnerThis but will never pick "this".
*/
JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
Symbol c = sym.owner;
List<VarSymbol> ots = outerThisStack;
if (ots.isEmpty()) {
log.error(pos, "no.encl.instance.of.type.in.scope", c);
assert false;
return makeNull();
}
VarSymbol ot = ots.head;
JCExpression tree = access(make.at(pos).Ident(ot));
TypeSymbol otc = ot.type.tsym;
while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
do {
ots = ots.tail;
if (ots.isEmpty()) {
log.error(pos,
"no.encl.instance.of.type.in.scope",
c);
assert false;
return tree;
}
ot = ots.head;
} while (ot.owner != otc);
tree = access(make.at(pos).Select(tree, ot));
otc = ot.type.tsym;
}
return tree;
}
/** Return tree simulating the assignment <this.name = name>, where
* name is the name of a free variable.
*/
JCStatement initField(int pos, Name name) {
Scope.Entry e = proxies.lookup(name);
Symbol rhs = e.sym;
assert rhs.owner.kind == MTH;
Symbol lhs = e.next().sym;
assert rhs.owner.owner == lhs.owner;
make.at(pos);
return
make.Exec(
make.Assign(
make.Select(make.This(lhs.owner.erasure(types)), lhs),
make.Ident(rhs)).setType(lhs.erasure(types)));
}
/** Return tree simulating the assignment <this.this$n = this$n>.
*/
JCStatement initOuterThis(int pos) {
VarSymbol rhs = outerThisStack.head;
assert rhs.owner.kind == MTH;
VarSymbol lhs = outerThisStack.tail.head;
assert rhs.owner.owner == lhs.owner;
make.at(pos);
return
make.Exec(
make.Assign(
make.Select(make.This(lhs.owner.erasure(types)), lhs),
make.Ident(rhs)).setType(lhs.erasure(types)));
}
/**************************************************************************
* Code for .class
*************************************************************************/
/** Return the symbol of a class to contain a cache of
* compiler-generated statics such as class$ and the
* $assertionsDisabled flag. We create an anonymous nested class
* (unless one already exists) and return its symbol. However,
* for backward compatibility in 1.4 and earlier we use the
* top-level class itself.
*/
private ClassSymbol outerCacheClass() {
ClassSymbol clazz = outermostClassDef.sym;
if ((clazz.flags() & INTERFACE) == 0 &&
!target.useInnerCacheClass()) return clazz;
Scope s = clazz.members();
for (Scope.Entry e = s.elems; e != null; e = e.sibling)
if (e.sym.kind == TYP &&
e.sym.name == names.empty &&
(e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
return makeEmptyClass(STATIC | SYNTHETIC, clazz);
}
/** Return symbol for "class$" method. If there is no method definition
* for class$, construct one as follows:
*
* class class$(String x0) {
* try {
* return Class.forName(x0);
* } catch (ClassNotFoundException x1) {
* throw new NoClassDefFoundError(x1.getMessage());
* }
* }
*/
private MethodSymbol classDollarSym(DiagnosticPosition pos) {
ClassSymbol outerCacheClass = outerCacheClass();
MethodSymbol classDollarSym =
(MethodSymbol)lookupSynthetic(classDollar,
outerCacheClass.members());
if (classDollarSym == null) {
classDollarSym = new MethodSymbol(
STATIC | SYNTHETIC,
classDollar,
new MethodType(
List.of(syms.stringType),
types.erasure(syms.classType),
List.<Type>nil(),
syms.methodClass),
outerCacheClass);
enterSynthetic(pos, classDollarSym, outerCacheClass.members());
JCMethodDecl md = make.MethodDef(classDollarSym, null);
try {
md.body = classDollarSymBody(pos, md);
} catch (CompletionFailure ex) {
md.body = make.Block(0, List.<JCStatement>nil());
chk.completionError(pos, ex);
}
JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
}
return classDollarSym;
}
/** Generate code for class$(String name). */
JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
MethodSymbol classDollarSym = md.sym;
ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
JCBlock returnResult;
// in 1.4.2 and above, we use
// Class.forName(String name, boolean init, ClassLoader loader);
// which requires we cache the current loader in cl$
if (target.classLiteralsNoInit()) {
// clsym = "private static ClassLoader cl$"
VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
names.fromString("cl" + target.syntheticNameChar()),
syms.classLoaderType,
outerCacheClass);
enterSynthetic(pos, clsym, outerCacheClass.members());
// emit "private static ClassLoader cl$;"
JCVariableDecl cldef = make.VarDef(clsym, null);
JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
// newcache := "new cache$1[0]"
JCNewArray newcache = make.
NewArray(make.Type(outerCacheClass.type),
List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
null);
newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
syms.arrayClass);
// forNameSym := java.lang.Class.forName(
// String s,boolean init,ClassLoader loader)
Symbol forNameSym = lookupMethod(make_pos, names.forName,
types.erasure(syms.classType),
List.of(syms.stringType,
syms.booleanType,
syms.classLoaderType));
// clvalue := "(cl$ == null) ?
// $newcache.getClass().getComponentType().getClassLoader() : cl$"
JCExpression clvalue =
make.Conditional(
makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
make.Assign(
make.Ident(clsym),
makeCall(
makeCall(makeCall(newcache,
names.getClass,
List.<JCExpression>nil()),
names.getComponentType,
List.<JCExpression>nil()),
names.getClassLoader,
List.<JCExpression>nil())).setType(syms.classLoaderType),
make.Ident(clsym)).setType(syms.classLoaderType);
// returnResult := "{ return Class.forName(param1, false, cl$); }"
List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
makeLit(syms.booleanType, 0),
clvalue);
returnResult = make.
Block(0, List.<JCStatement>of(make.
Call(make. // return
App(make.
Ident(forNameSym), args))));
} else {
// forNameSym := java.lang.Class.forName(String s)
Symbol forNameSym = lookupMethod(make_pos,
names.forName,
types.erasure(syms.classType),
List.of(syms.stringType));
// returnResult := "{ return Class.forName(param1); }"
returnResult = make.
Block(0, List.of(make.
Call(make. // return
App(make.
QualIdent(forNameSym),
List.<JCExpression>of(make.
Ident(md.params.
head.sym))))));
}
// catchParam := ClassNotFoundException e1
VarSymbol catchParam =
new VarSymbol(0, make.paramName(1),
syms.classNotFoundExceptionType,
classDollarSym);
JCStatement rethrow;
if (target.hasInitCause()) {
// rethrow = "throw new NoClassDefFoundError().initCause(e);
JCTree throwExpr =
makeCall(makeNewClass(syms.noClassDefFoundErrorType,
List.<JCExpression>nil()),
names.initCause,
List.<JCExpression>of(make.Ident(catchParam)));
rethrow = make.Throw(throwExpr);
} else {
// getMessageSym := ClassNotFoundException.getMessage()
Symbol getMessageSym = lookupMethod(make_pos,
names.getMessage,
syms.classNotFoundExceptionType,
List.<Type>nil());
// rethrow = "throw new NoClassDefFoundError(e.getMessage());"
rethrow = make.
Throw(makeNewClass(syms.noClassDefFoundErrorType,
List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
getMessageSym),
List.<JCExpression>nil()))));
}
// rethrowStmt := "( $rethrow )"
JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
// catchBlock := "catch ($catchParam) $rethrowStmt"
JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
rethrowStmt);
// tryCatch := "try $returnResult $catchBlock"
JCStatement tryCatch = make.Try(returnResult,
List.of(catchBlock), null);
return make.Block(0, List.of(tryCatch));
}
// where
/** Create an attributed tree of the form left.name(). */
private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
assert left.type != null;
Symbol funcsym = lookupMethod(make_pos, name, left.type,
TreeInfo.types(args));
return make.App(make.Select(left, funcsym), args);
}
/** The Name Of The variable to cache T.class values.
* @param sig The signature of type T.
*/
private Name cacheName(String sig) {
StringBuffer buf = new StringBuffer();
if (sig.startsWith("[")) {
buf = buf.append("array");
while (sig.startsWith("[")) {
buf = buf.append(target.syntheticNameChar());
sig = sig.substring(1);
}
if (sig.startsWith("L")) {
sig = sig.substring(0, sig.length() - 1);
}
} else {
buf = buf.append("class" + target.syntheticNameChar());
}
buf = buf.append(sig.replace('.', target.syntheticNameChar()));
return names.fromString(buf.toString());
}
/** The variable symbol that caches T.class values.
* If none exists yet, create a definition.
* @param sig The signature of type T.
* @param pos The position to report diagnostics, if any.
*/
private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
ClassSymbol outerCacheClass = outerCacheClass();
Name cname = cacheName(sig);
VarSymbol cacheSym =
(VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
if (cacheSym == null) {
cacheSym = new VarSymbol(
STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
enterSynthetic(pos, cacheSym, outerCacheClass.members());
JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
}
return cacheSym;
}
/** The tree simulating a T.class expression.
* @param clazz The tree identifying type T.
*/
private JCExpression classOf(JCTree clazz) {
return classOfType(clazz.type, clazz.pos());
}
private JCExpression classOfType(Type type, DiagnosticPosition pos) {
switch (type.tag) {
case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
case DOUBLE: case BOOLEAN: case VOID:
// replace with <BoxedClass>.TYPE
ClassSymbol c = types.boxedClass(type);
Symbol typeSym =
rs.access(
rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
pos, c.type, names.TYPE, true);
if (typeSym.kind == VAR)
((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
return make.QualIdent(typeSym);
case CLASS: case ARRAY:
if (target.hasClassLiterals()) {
VarSymbol sym = new VarSymbol(
STATIC | PUBLIC | FINAL, names._class,
syms.classType, type.tsym);
return make_at(pos).Select(make.Type(type), sym);
}
// replace with <cache == null ? cache = class$(tsig) : cache>
// where
// - <tsig> is the type signature of T,
// - <cache> is the cache variable for tsig.
String sig =
writer.xClassName(type).toString().replace('/', '.');
Symbol cs = cacheSym(pos, sig);
return make_at(pos).Conditional(
makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
make.Assign(
make.Ident(cs),
make.App(
make.Ident(classDollarSym(pos)),
List.<JCExpression>of(make.Literal(CLASS, sig)
.setType(syms.stringType))))
.setType(types.erasure(syms.classType)),
make.Ident(cs)).setType(types.erasure(syms.classType));
default:
throw new AssertionError();
}
}
/**************************************************************************
* Code for enabling/disabling assertions.
*************************************************************************/
// This code is not particularly robust if the user has
// previously declared a member named '$assertionsDisabled'.
// The same faulty idiom also appears in the translation of
// class literals above. We should report an error if a
// previous declaration is not synthetic.
private JCExpression assertFlagTest(DiagnosticPosition pos) {
// Outermost class may be either true class or an interface.
ClassSymbol outermostClass = outermostClassDef.sym;
// note that this is a class, as an interface can't contain a statement.
ClassSymbol container = currentClass;
VarSymbol assertDisabledSym =
(VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
container.members());
if (assertDisabledSym == null) {
assertDisabledSym =
new VarSymbol(STATIC | FINAL | SYNTHETIC,
dollarAssertionsDisabled,
syms.booleanType,
container);
enterSynthetic(pos, assertDisabledSym, container.members());
Symbol desiredAssertionStatusSym = lookupMethod(pos,
names.desiredAssertionStatus,
types.erasure(syms.classType),
List.<Type>nil());
JCClassDecl containerDef = classDef(container);
make_at(containerDef.pos());
JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
classOfType(types.erasure(outermostClass.type),
containerDef.pos()),
desiredAssertionStatusSym)));
JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
notStatus);
containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
}
make_at(pos);
return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
}
/**************************************************************************
* Building blocks for let expressions
*************************************************************************/
interface TreeBuilder {
JCTree build(JCTree arg);
}
/** Construct an expression using the builder, with the given rval
* expression as an argument to the builder. However, the rval
* expression must be computed only once, even if used multiple
* times in the result of the builder. We do that by
* constructing a "let" expression that saves the rvalue into a
* temporary variable and then uses the temporary variable in
* place of the expression built by the builder. The complete
* resulting expression is of the form
* <pre>
* (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
* in (<b>BUILDER</b>(<b>TEMP</b>)))
* </pre>
* where <code><b>TEMP</b></code> is a newly declared variable
* in the let expression.
*/
JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
rval = TreeInfo.skipParens(rval);
switch (rval.tag) {
case JCTree.LITERAL:
return builder.build(rval);
case JCTree.IDENT:
JCIdent id = (JCIdent) rval;
if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
return builder.build(rval);
}
VarSymbol var =
new VarSymbol(FINAL|SYNTHETIC,
Name.fromString(names,
target.syntheticNameChar()
+ "" + rval.hashCode()),
type,
currentMethodSym);
JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
JCTree built = builder.build(make.Ident(var));
JCTree res = make.LetExpr(def, built);
res.type = built.type;
return res;
}
// same as above, with the type of the temporary variable computed
JCTree abstractRval(JCTree rval, TreeBuilder builder) {
return abstractRval(rval, rval.type, builder);
}
// same as above, but for an expression that may be used as either
// an rvalue or an lvalue. This requires special handling for
// Select expressions, where we place the left-hand-side of the
// select in a temporary, and for Indexed expressions, where we
// place both the indexed expression and the index value in temps.
JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
lval = TreeInfo.skipParens(lval);
switch (lval.tag) {
case JCTree.IDENT:
return builder.build(lval);
case JCTree.SELECT: {
final JCFieldAccess s = (JCFieldAccess)lval;
JCTree selected = TreeInfo.skipParens(s.selected);
Symbol lid = TreeInfo.symbol(s.selected);
if (lid != null && lid.kind == TYP) return builder.build(lval);
return abstractRval(s.selected, new TreeBuilder() {
public JCTree build(final JCTree selected) {
return builder.build(make.Select((JCExpression)selected, s.sym));
}
});
}
case JCTree.INDEXED: {
final JCArrayAccess i = (JCArrayAccess)lval;
return abstractRval(i.indexed, new TreeBuilder() {
public JCTree build(final JCTree indexed) {
return abstractRval(i.index, syms.intType, new TreeBuilder() {
public JCTree build(final JCTree index) {
JCTree newLval = make.Indexed((JCExpression)indexed,
(JCExpression)index);
newLval.setType(i.type);
return builder.build(newLval);
}
});
}
});
}
}
throw new AssertionError(lval);
}
// evaluate and discard the first expression, then evaluate the second.
JCTree makeComma(final JCTree expr1, final JCTree expr2) {
return abstractRval(expr1, new TreeBuilder() {
public JCTree build(final JCTree discarded) {
return expr2;
}
});
}
/**************************************************************************
* Translation methods
*************************************************************************/
/** Visitor argument: enclosing operator node.
*/
private JCExpression enclOp;
/** Visitor method: Translate a single node.
* Attach the source position from the old tree to its replacement tree.
*/
public <T extends JCTree> T translate(T tree) {
if (tree == null) {
return null;
} else {
make_at(tree.pos());
T result = super.translate(tree);
if (endPositions != null && result != tree) {
Integer endPos = endPositions.remove(tree);
if (endPos != null) endPositions.put(result, endPos);
}
return result;
}
}
/** Visitor method: Translate a single node, boxing or unboxing if needed.
*/
public <T extends JCTree> T translate(T tree, Type type) {
return (tree == null) ? null : boxIfNeeded(translate(tree), type);
}
/** Visitor method: Translate tree.
*/
public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
JCExpression prevEnclOp = this.enclOp;
this.enclOp = enclOp;
T res = translate(tree);
this.enclOp = prevEnclOp;
return res;
}
/** Visitor method: Translate list of trees.
*/
public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
JCExpression prevEnclOp = this.enclOp;
this.enclOp = enclOp;
List<T> res = translate(trees);
this.enclOp = prevEnclOp;
return res;
}
/** Visitor method: Translate list of trees.
*/
public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
if (trees == null) return null;
for (List<T> l = trees; l.nonEmpty(); l = l.tail)
l.head = translate(l.head, type);
return trees;
}
public void visitTopLevel(JCCompilationUnit tree) {
if (tree.packageAnnotations.nonEmpty()) {
Name name = names.package_info;
long flags = Flags.SYNTHETIC | Flags.ABSTRACT | Flags.INTERFACE;
JCClassDecl packageAnnotationsClass
= make.ClassDef(make.Modifiers(flags,
tree.packageAnnotations),
name, List.<JCTypeParameter>nil(),
null, List.<JCExpression>nil(), List.<JCTree>nil());
ClassSymbol c = reader.enterClass(name, tree.packge);
c.flatname = names.fromString(tree.packge + "." + name);
c.sourcefile = tree.sourcefile;
c.completer = null;
c.members_field = new Scope(c);
c.flags_field = flags;
c.attributes_field = tree.packge.attributes_field;
tree.packge.attributes_field = List.nil();
ClassType ctype = (ClassType) c.type;
ctype.supertype_field = syms.objectType;
ctype.interfaces_field = List.nil();
packageAnnotationsClass.sym = c;
translated.append(packageAnnotationsClass);
}
}
public void visitClassDef(JCClassDecl tree) {
ClassSymbol currentClassPrev = currentClass;
MethodSymbol currentMethodSymPrev = currentMethodSym;
currentClass = tree.sym;
currentMethodSym = null;
classdefs.put(currentClass, tree);
proxies = proxies.dup(currentClass);
List<VarSymbol> prevOuterThisStack = outerThisStack;
// If this is an enum definition
if ((tree.mods.flags & ENUM) != 0 &&
(types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
visitEnumDef(tree);
// If this is a nested class, define a this$n field for
// it and add to proxies.
JCVariableDecl otdef = null;
if (currentClass.hasOuterInstance())
otdef = outerThisDef(tree.pos, currentClass);
// If this is a local class, define proxies for all its free variables.
List<JCVariableDecl> fvdefs = freevarDefs(
tree.pos, freevars(currentClass), currentClass);
// Recursively translate superclass, interfaces.
tree.extending = translate(tree.extending);
tree.implementing = translate(tree.implementing);
// Recursively translate members, taking into account that new members
// might be created during the translation and prepended to the member
// list `tree.defs'.
List<JCTree> seen = List.nil();
while (tree.defs != seen) {
List<JCTree> unseen = tree.defs;
for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
JCTree outermostMemberDefPrev = outermostMemberDef;
if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
l.head = translate(l.head);
outermostMemberDef = outermostMemberDefPrev;
}
seen = unseen;
}
// Convert a protected modifier to public, mask static modifier.
if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
tree.mods.flags &= ClassFlags;
// Convert name to flat representation, replacing '.' by '$'.
tree.name = Convert.shortName(currentClass.flatName());
// Add this$n and free variables proxy definitions to class.
for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
tree.defs = tree.defs.prepend(l.head);
enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
}
if (currentClass.hasOuterInstance()) {
tree.defs = tree.defs.prepend(otdef);
enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
}
proxies = proxies.leave();
outerThisStack = prevOuterThisStack;
// Append translated tree to `translated' queue.
translated.append(tree);
currentClass = currentClassPrev;
currentMethodSym = currentMethodSymPrev;
// Return empty block {} as a placeholder for an inner class.
result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
}
/** Translate an enum class. */
private void visitEnumDef(JCClassDecl tree) {
make_at(tree.pos());
// add the supertype, if needed
if (tree.extending == null)
tree.extending = make.Type(types.supertype(tree.type));
// classOfType adds a cache field to tree.defs unless
// target.hasClassLiterals().
JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
setType(types.erasure(syms.classType));
// process each enumeration constant, adding implicit constructor parameters
int nextOrdinal = 0;
ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
for (List<JCTree> defs = tree.defs;
defs.nonEmpty();
defs=defs.tail) {
if (defs.head.tag == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
JCVariableDecl var = (JCVariableDecl)defs.head;
visitEnumConstantDef(var, nextOrdinal++);
values.append(make.QualIdent(var.sym));
enumDefs.append(var);
} else {
otherDefs.append(defs.head);
}
}
// private static final T[] #VALUES = { a, b, c };
Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
valuesName,
arrayType,
tree.type.tsym);
JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
List.<JCExpression>nil(),
values.toList());
newArray.type = arrayType;
enumDefs.append(make.VarDef(valuesVar, newArray));
tree.sym.members().enter(valuesVar);
Symbol valuesSym = lookupMethod(tree.pos(), names.values,
tree.type, List.<Type>nil());
JCTypeCast valuesResult =
make.TypeCast(valuesSym.type.getReturnType(),
make.App(make.Select(make.Ident(valuesVar),
syms.arrayCloneMethod)));
JCMethodDecl valuesDef =
make.MethodDef((MethodSymbol)valuesSym,
make.Block(0, List.<JCStatement>nil()
.prepend(make.Return(valuesResult))));
enumDefs.append(valuesDef);
/** The template for the following code is:
*
* public static E valueOf(String name) {
* return (E)Enum.valueOf(E.class, name);
* }
*
* where E is tree.sym
*/
MethodSymbol valueOfSym = lookupMethod(tree.pos(),
names.valueOf,
tree.sym.type,
List.of(syms.stringType));
assert (valueOfSym.flags() & STATIC) != 0;
VarSymbol nameArgSym = valueOfSym.params.head;
JCIdent nameVal = make.Ident(nameArgSym);
JCStatement enum_ValueOf =
make.Return(make.TypeCast(tree.sym.type,
makeCall(make.Ident(syms.enumSym),
names.valueOf,
List.of(e_class, nameVal))));
JCMethodDecl valueOf = make.MethodDef(valueOfSym,
make.Block(0, List.of(enum_ValueOf)));
nameVal.sym = valueOf.params.head.sym;
if (debugLower)
System.err.println(tree.sym + ".valueOf = " + valueOf);
enumDefs.append(valueOf);
enumDefs.appendList(otherDefs.toList());
tree.defs = enumDefs.toList();
// Add the necessary members for the EnumCompatibleMode
if (target.compilerBootstrap(tree.sym)) {
addEnumCompatibleMembers(tree);
}
}
/** Translate an enumeration constant and its initializer. */
private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
JCNewClass varDef = (JCNewClass)var.init;
varDef.args = varDef.args.
prepend(makeLit(syms.intType, ordinal)).
prepend(makeLit(syms.stringType, var.name.toString()));
}
public void visitMethodDef(JCMethodDecl tree) {
if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
// Add "String $enum$name, int $enum$ordinal" to the beginning of the
// argument list for each constructor of an enum.
JCVariableDecl nameParam = make_at(tree.pos()).
Param(names.fromString(target.syntheticNameChar() +
"enum" + target.syntheticNameChar() + "name"),
syms.stringType, tree.sym);
nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
JCVariableDecl ordParam = make.
Param(names.fromString(target.syntheticNameChar() +
"enum" + target.syntheticNameChar() +
"ordinal"),
syms.intType, tree.sym);
ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
tree.params = tree.params.prepend(ordParam).prepend(nameParam);
MethodSymbol m = tree.sym;
Type olderasure = m.erasure(types);
m.erasure_field = new MethodType(
olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
olderasure.getReturnType(),
olderasure.getThrownTypes(),
syms.methodClass);
if (target.compilerBootstrap(m.owner)) {
// Initialize synthetic name field
Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
tree.sym.owner.members());
JCIdent nameIdent = make.Ident(nameParam.sym);
JCIdent id1 = make.Ident(nameVarSym);
JCAssign newAssign = make.Assign(id1, nameIdent);
newAssign.type = id1.type;
JCExpressionStatement nameAssign = make.Exec(newAssign);
nameAssign.type = id1.type;
tree.body.stats = tree.body.stats.prepend(nameAssign);
// Initialize synthetic ordinal field
Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
tree.sym.owner.members());
JCIdent ordIdent = make.Ident(ordParam.sym);
id1 = make.Ident(ordinalVarSym);
newAssign = make.Assign(id1, ordIdent);
newAssign.type = id1.type;
JCExpressionStatement ordinalAssign = make.Exec(newAssign);
ordinalAssign.type = id1.type;
tree.body.stats = tree.body.stats.prepend(ordinalAssign);
}
}
JCMethodDecl prevMethodDef = currentMethodDef;
MethodSymbol prevMethodSym = currentMethodSym;
try {
currentMethodDef = tree;
currentMethodSym = tree.sym;
visitMethodDefInternal(tree);
} finally {
currentMethodDef = prevMethodDef;
currentMethodSym = prevMethodSym;
}
}
//where
private void visitMethodDefInternal(JCMethodDecl tree) {
if (tree.name == names.init &&
(currentClass.isInner() ||
(currentClass.owner.kind & (VAR | MTH)) != 0)) {
// We are seeing a constructor of an inner class.
MethodSymbol m = tree.sym;
// Push a new proxy scope for constructor parameters.
// and create definitions for any this$n and proxy parameters.
proxies = proxies.dup(m);
List<VarSymbol> prevOuterThisStack = outerThisStack;
List<VarSymbol> fvs = freevars(currentClass);
JCVariableDecl otdef = null;
if (currentClass.hasOuterInstance())
otdef = outerThisDef(tree.pos, m);
List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
// Recursively translate result type, parameters and thrown list.
tree.restype = translate(tree.restype);
tree.params = translateVarDefs(tree.params);
tree.thrown = translate(tree.thrown);
// when compiling stubs, don't process body
if (tree.body == null) {
result = tree;
return;
}
// Add this$n (if needed) in front of and free variables behind
// constructor parameter list.
tree.params = tree.params.appendList(fvdefs);
if (currentClass.hasOuterInstance())
tree.params = tree.params.prepend(otdef);
// If this is an initial constructor, i.e., it does not start with
// this(...), insert initializers for this$n and proxies
// before (pre-1.4, after) the call to superclass constructor.
JCStatement selfCall = translate(tree.body.stats.head);
List<JCStatement> added = List.nil();
if (fvs.nonEmpty()) {
List<Type> addedargtypes = List.nil();
for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
if (TreeInfo.isInitialConstructor(tree))
added = added.prepend(
initField(tree.body.pos, proxyName(l.head.name)));
addedargtypes = addedargtypes.prepend(l.head.erasure(types));
}
Type olderasure = m.erasure(types);
m.erasure_field = new MethodType(
olderasure.getParameterTypes().appendList(addedargtypes),
olderasure.getReturnType(),
olderasure.getThrownTypes(),
syms.methodClass);
}
if (currentClass.hasOuterInstance() &&
TreeInfo.isInitialConstructor(tree))
{
added = added.prepend(initOuterThis(tree.body.pos));
}
// pop local variables from proxy stack
proxies = proxies.leave();
// recursively translate following local statements and
// combine with this- or super-call
List<JCStatement> stats = translate(tree.body.stats.tail);
if (target.initializeFieldsBeforeSuper())
tree.body.stats = stats.prepend(selfCall).prependList(added);
else
tree.body.stats = stats.prependList(added).prepend(selfCall);
outerThisStack = prevOuterThisStack;
} else {
super.visitMethodDef(tree);
}
result = tree;
}
public void visitTypeCast(JCTypeCast tree) {
tree.clazz = translate(tree.clazz);
if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
tree.expr = translate(tree.expr, tree.type);
else
tree.expr = translate(tree.expr);
result = tree;
}
public void visitNewClass(JCNewClass tree) {
ClassSymbol c = (ClassSymbol)tree.constructor.owner;
// Box arguments, if necessary
boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
List<Type> argTypes = tree.constructor.type.getParameterTypes();
if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
tree.varargsElement = null;
// If created class is local, add free variables after
// explicit constructor arguments.
if ((c.owner.kind & (VAR | MTH)) != 0) {
tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
}
// If an access constructor is used, append null as a last argument.
Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
if (constructor != tree.constructor) {
tree.args = tree.args.append(makeNull());
tree.constructor = constructor;
}
// If created class has an outer instance, and new is qualified, pass
// qualifier as first argument. If new is not qualified, pass the
// correct outer instance as first argument.
if (c.hasOuterInstance()) {
JCExpression thisArg;
if (tree.encl != null) {
thisArg = attr.makeNullCheck(translate(tree.encl));
thisArg.type = tree.encl.type;
} else if ((c.owner.kind & (MTH | VAR)) != 0) {
// local class
thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
} else {
// nested class
thisArg = makeOwnerThis(tree.pos(), c, false);
}
tree.args = tree.args.prepend(thisArg);
}
tree.encl = null;
// If we have an anonymous class, create its flat version, rather
// than the class or interface following new.
if (tree.def != null) {
translate(tree.def);
tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
tree.def = null;
} else {
tree.clazz = access(c, tree.clazz, enclOp, false);
}
result = tree;
}
// Simplify conditionals with known constant controlling expressions.
// This allows us to avoid generating supporting declarations for
// the dead code, which will not be eliminated during code generation.
// Note that Flow.isFalse and Flow.isTrue only return true
// for constant expressions in the sense of JLS 15.27, which
// are guaranteed to have no side-effects. More agressive
// constant propagation would require that we take care to
// preserve possible side-effects in the condition expression.
/** Visitor method for conditional expressions.
*/
public void visitConditional(JCConditional tree) {
JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
if (cond.type.isTrue()) {
result = convert(translate(tree.truepart, tree.type), tree.type);
} else if (cond.type.isFalse()) {
result = convert(translate(tree.falsepart, tree.type), tree.type);
} else {
// Condition is not a compile-time constant.
tree.truepart = translate(tree.truepart, tree.type);
tree.falsepart = translate(tree.falsepart, tree.type);
result = tree;
}
}
//where
private JCTree convert(JCTree tree, Type pt) {
if (tree.type == pt) return tree;
JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
: pt;
return result;
}
/** Visitor method for if statements.
*/
public void visitIf(JCIf tree) {
JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
if (cond.type.isTrue()) {
result = translate(tree.thenpart);
} else if (cond.type.isFalse()) {
if (tree.elsepart != null) {
result = translate(tree.elsepart);
} else {
result = make.Skip();
}
} else {
// Condition is not a compile-time constant.
tree.thenpart = translate(tree.thenpart);
tree.elsepart = translate(tree.elsepart);
result = tree;
}
}
/** Visitor method for assert statements. Translate them away.
*/
public void visitAssert(JCAssert tree) {
DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
tree.cond = translate(tree.cond, syms.booleanType);
if (!tree.cond.type.isTrue()) {
JCExpression cond = assertFlagTest(tree.pos());
List<JCExpression> exnArgs = (tree.detail == null) ?
List.<JCExpression>nil() : List.of(translate(tree.detail));
if (!tree.cond.type.isFalse()) {
cond = makeBinary
(JCTree.AND,
cond,
makeUnary(JCTree.NOT, tree.cond));
}
result =
make.If(cond,
make_at(detailPos).
Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
null);
} else {
result = make.Skip();
}
}
public void visitApply(JCMethodInvocation tree) {
Symbol meth = TreeInfo.symbol(tree.meth);
List<Type> argtypes = meth.type.getParameterTypes();
if (allowEnums &&
meth.name==names.init &&
meth.owner == syms.enumSym)
argtypes = argtypes.tail.tail;
tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
tree.varargsElement = null;
Name methName = TreeInfo.name(tree.meth);
if (meth.name==names.init) {
// We are seeing a this(...) or super(...) constructor call.
// If an access constructor is used, append null as a last argument.
Symbol constructor = accessConstructor(tree.pos(), meth);
if (constructor != meth) {
tree.args = tree.args.append(makeNull());
TreeInfo.setSymbol(tree.meth, constructor);
}
// If we are calling a constructor of a local class, add
// free variables after explicit constructor arguments.
ClassSymbol c = (ClassSymbol)constructor.owner;
if ((c.owner.kind & (VAR | MTH)) != 0) {
tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
}
// If we are calling a constructor of an enum class, pass
// along the name and ordinal arguments
if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
List<JCVariableDecl> params = currentMethodDef.params;
if (currentMethodSym.owner.hasOuterInstance())
params = params.tail; // drop this$n
tree.args = tree.args
.prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
.prepend(make.Ident(params.head.sym)); // name
}
// If we are calling a constructor of a class with an outer
// instance, and the call
// is qualified, pass qualifier as first argument in front of
// the explicit constructor arguments. If the call
// is not qualified, pass the correct outer instance as
// first argument.
if (c.hasOuterInstance()) {
JCExpression thisArg;
if (tree.meth.tag == JCTree.SELECT) {
thisArg = attr.
makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
tree.meth = make.Ident(constructor);
((JCIdent) tree.meth).name = methName;
} else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
// local class or this() call
thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
} else {
// super() call of nested class
thisArg = makeOwnerThis(tree.meth.pos(), c, false);
}
tree.args = tree.args.prepend(thisArg);
}
} else {
// We are seeing a normal method invocation; translate this as usual.
tree.meth = translate(tree.meth);
// If the translated method itself is an Apply tree, we are
// seeing an access method invocation. In this case, append
// the method arguments to the arguments of the access method.
if (tree.meth.tag == JCTree.APPLY) {
JCMethodInvocation app = (JCMethodInvocation)tree.meth;
app.args = tree.args.prependList(app.args);
result = app;
return;
}
}
result = tree;
}
List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
List<JCExpression> args = _args;
if (parameters.isEmpty()) return args;
boolean anyChanges = false;
ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
while (parameters.tail.nonEmpty()) {
JCExpression arg = translate(args.head, parameters.head);
anyChanges |= (arg != args.head);
result.append(arg);
args = args.tail;
parameters = parameters.tail;
}
Type parameter = parameters.head;
if (varargsElement != null) {
anyChanges = true;
ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
while (args.nonEmpty()) {
JCExpression arg = translate(args.head, varargsElement);
elems.append(arg);
args = args.tail;
}
JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
List.<JCExpression>nil(),
elems.toList());
boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
result.append(boxedArgs);
} else {
if (args.length() != 1) throw new AssertionError(args);
JCExpression arg = translate(args.head, parameter);
anyChanges |= (arg != args.head);
result.append(arg);
if (!anyChanges) return _args;
}
return result.toList();
}
/** Expand a boxing or unboxing conversion if needed. */
@SuppressWarnings("unchecked") // XXX unchecked
<T extends JCTree> T boxIfNeeded(T tree, Type type) {
boolean havePrimitive = tree.type.isPrimitive();
if (havePrimitive == type.isPrimitive())
return tree;
if (havePrimitive) {
Type unboxedTarget = types.unboxedType(type);
if (unboxedTarget.tag != NONE) {
if (!types.isSubtype(tree.type, unboxedTarget))
tree.type = unboxedTarget; // e.g. Character c = 89;
return (T)boxPrimitive((JCExpression)tree, type);
} else {
tree = (T)boxPrimitive((JCExpression)tree);
}
} else {
tree = (T)unbox((JCExpression)tree, type);
}
return tree;
}
/** Box up a single primitive expression. */
JCExpression boxPrimitive(JCExpression tree) {
return boxPrimitive(tree, types.boxedClass(tree.type).type);
}
/** Box up a single primitive expression. */
JCExpression boxPrimitive(JCExpression tree, Type box) {
make_at(tree.pos());
if (target.boxWithConstructors()) {
Symbol ctor = lookupConstructor(tree.pos(),
box,
List.<Type>nil()
.prepend(tree.type));
return make.Create(ctor, List.of(tree));
} else {
Symbol valueOfSym = lookupMethod(tree.pos(),
names.valueOf,
box,
List.<Type>nil()
.prepend(tree.type));
return make.App(make.QualIdent(valueOfSym), List.of(tree));
}
}
/** Unbox an object to a primitive value. */
JCExpression unbox(JCExpression tree, Type primitive) {
Type unboxedType = types.unboxedType(tree.type);
// note: the "primitive" parameter is not used. There muse be
// a conversion from unboxedType to primitive.
make_at(tree.pos());
Symbol valueSym = lookupMethod(tree.pos(),
unboxedType.tsym.name.append(names.Value), // x.intValue()
tree.type,
List.<Type>nil());
return make.App(make.Select(tree, valueSym));
}
/** Visitor method for parenthesized expressions.
* If the subexpression has changed, omit the parens.
*/
public void visitParens(JCParens tree) {
JCTree expr = translate(tree.expr);
result = ((expr == tree.expr) ? tree : expr);
}
public void visitIndexed(JCArrayAccess tree) {
tree.indexed = translate(tree.indexed);
tree.index = translate(tree.index, syms.intType);
result = tree;
}
public void visitAssign(JCAssign tree) {
tree.lhs = translate(tree.lhs, tree);
tree.rhs = translate(tree.rhs, tree.lhs.type);
// If translated left hand side is an Apply, we are
// seeing an access method invocation. In this case, append
// right hand side as last argument of the access method.
if (tree.lhs.tag == JCTree.APPLY) {
JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
app.args = List.of(tree.rhs).prependList(app.args);
result = app;
} else {
result = tree;
}
}
public void visitAssignop(final JCAssignOp tree) {
if (!tree.lhs.type.isPrimitive() &&
tree.operator.type.getReturnType().isPrimitive()) {
// boxing required; need to rewrite as x = (unbox typeof x)(x op y);
// or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
// (but without recomputing x)
JCTree arg = (tree.lhs.tag == JCTree.TYPECAST)
? ((JCTypeCast)tree.lhs).expr
: tree.lhs;
JCTree newTree = abstractLval(arg, new TreeBuilder() {
public JCTree build(final JCTree lhs) {
int newTag = tree.tag - JCTree.ASGOffset;
// Erasure (TransTypes) can change the type of
// tree.lhs. However, we can still get the
// unerased type of tree.lhs as it is stored
// in tree.type in Attr.
Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
newTag,
attrEnv,
tree.type,
tree.rhs.type);
JCExpression expr = (JCExpression)lhs;
if (expr.type != tree.type)
expr = make.TypeCast(tree.type, expr);
JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
opResult.operator = newOperator;
opResult.type = newOperator.type.getReturnType();
JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
opResult);
return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
}
});
result = translate(newTree);
return;
}
tree.lhs = translate(tree.lhs, tree);
tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
// If translated left hand side is an Apply, we are
// seeing an access method invocation. In this case, append
// right hand side as last argument of the access method.
if (tree.lhs.tag == JCTree.APPLY) {
JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
// if operation is a += on strings,
// make sure to convert argument to string
JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
? makeString(tree.rhs)
: tree.rhs;
app.args = List.of(rhs).prependList(app.args);
result = app;
} else {
result = tree;
}
}
/** Lower a tree of the form e++ or e-- where e is an object type */
JCTree lowerBoxedPostop(final JCUnary tree) {
// translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
// or
// translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
// where OP is += or -=
final boolean cast = tree.arg.tag == JCTree.TYPECAST;
final JCExpression arg = cast ? ((JCTypeCast)tree.arg).expr : tree.arg;
return abstractLval(arg, new TreeBuilder() {
public JCTree build(final JCTree tmp1) {
return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
public JCTree build(final JCTree tmp2) {
int opcode = (tree.tag == JCTree.POSTINC)
? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
JCTree lhs = cast
? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
: tmp1;
JCTree update = makeAssignop(opcode,
lhs,
make.Literal(1));
return makeComma(update, tmp2);
}
});
}
});
}
public void visitUnary(JCUnary tree) {
boolean isUpdateOperator =
JCTree.PREINC <= tree.tag && tree.tag <= JCTree.POSTDEC;
if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
switch(tree.tag) {
case JCTree.PREINC: // ++ e
// translate to e += 1
case JCTree.PREDEC: // -- e
// translate to e -= 1
{
int opcode = (tree.tag == JCTree.PREINC)
? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
JCAssignOp newTree = makeAssignop(opcode,
tree.arg,
make.Literal(1));
result = translate(newTree, tree.type);
return;
}
case JCTree.POSTINC: // e ++
case JCTree.POSTDEC: // e --
{
result = translate(lowerBoxedPostop(tree), tree.type);
return;
}
}
throw new AssertionError(tree);
}
tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
if (tree.tag == JCTree.NOT && tree.arg.type.constValue() != null) {
tree.type = cfolder.fold1(bool_not, tree.arg.type);
}
// If translated left hand side is an Apply, we are
// seeing an access method invocation. In this case, return
// that access method invokation as result.
if (isUpdateOperator && tree.arg.tag == JCTree.APPLY) {
result = tree.arg;
} else {
result = tree;
}
}
public void visitBinary(JCBinary tree) {
List<Type> formals = tree.operator.type.getParameterTypes();
JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
switch (tree.tag) {
case JCTree.OR:
if (lhs.type.isTrue()) {
result = lhs;
return;
}
if (lhs.type.isFalse()) {
result = translate(tree.rhs, formals.tail.head);
return;
}
break;
case JCTree.AND:
if (lhs.type.isFalse()) {
result = lhs;
return;
}
if (lhs.type.isTrue()) {
result = translate(tree.rhs, formals.tail.head);
return;
}
break;
}
tree.rhs = translate(tree.rhs, formals.tail.head);
result = tree;
}
public void visitIdent(JCIdent tree) {
result = access(tree.sym, tree, enclOp, false);
}
/** Translate away the foreach loop. */
public void visitForeachLoop(JCEnhancedForLoop tree) {
if (types.elemtype(tree.expr.type) == null)
visitIterableForeachLoop(tree);
else
visitArrayForeachLoop(tree);
}
// where
/**
* A statment of the form
*
* <pre>
* for ( T v : arrayexpr ) stmt;
* </pre>
*
* (where arrayexpr is of an array type) gets translated to
*
* <pre>
* for ( { arraytype #arr = arrayexpr;
* int #len = array.length;
* int #i = 0; };
* #i < #len; i$++ ) {
* T v = arr$[#i];
* stmt;
* }
* </pre>
*
* where #arr, #len, and #i are freshly named synthetic local variables.
*/
private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
make_at(tree.expr.pos());
VarSymbol arraycache = new VarSymbol(0,
names.fromString("arr" + target.syntheticNameChar()),
tree.expr.type,
currentMethodSym);
JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
VarSymbol lencache = new VarSymbol(0,
names.fromString("len" + target.syntheticNameChar()),
syms.intType,
currentMethodSym);
JCStatement lencachedef = make.
VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
VarSymbol index = new VarSymbol(0,
names.fromString("i" + target.syntheticNameChar()),
syms.intType,
currentMethodSym);
JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
indexdef.init.type = indexdef.type = syms.intType.constType(0);
List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
Type elemtype = types.elemtype(tree.expr.type);
JCStatement loopvarinit = make.
VarDef(tree.var.sym,
make.
Indexed(make.Ident(arraycache), make.Ident(index)).
setType(elemtype));
JCBlock body = make.
Block(0, List.of(loopvarinit, tree.body));
result = translate(make.
ForLoop(loopinit,
cond,
List.of(step),
body));
patchTargets(body, tree, result);
}
/** Patch up break and continue targets. */
private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
class Patcher extends TreeScanner {
public void visitBreak(JCBreak tree) {
if (tree.target == src)
tree.target = dest;
}
public void visitContinue(JCContinue tree) {
if (tree.target == src)
tree.target = dest;
}
public void visitClassDef(JCClassDecl tree) {}
}
new Patcher().scan(body);
}
/**
* A statement of the form
*
* <pre>
* for ( T v : coll ) stmt ;
* </pre>
*
* (where coll implements Iterable<? extends T>) gets translated to
*
* <pre>
* for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
* T v = (T) #i.next();
* stmt;
* }
* </pre>
*
* where #i is a freshly named synthetic local variable.
*/
private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
make_at(tree.expr.pos());
Type iteratorTarget = syms.objectType;
Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
syms.iterableType.tsym);
if (iterableType.getTypeArguments().nonEmpty())
iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
Type eType = tree.expr.type;
tree.expr.type = types.erasure(eType);
if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
Symbol iterator = lookupMethod(tree.expr.pos(),
names.iterator,
types.erasure(syms.iterableType),
List.<Type>nil());
VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
types.erasure(iterator.type.getReturnType()),
currentMethodSym);
JCStatement init = make.
VarDef(itvar,
make.App(make.Select(tree.expr, iterator)));
Symbol hasNext = lookupMethod(tree.expr.pos(),
names.hasNext,
itvar.type,
List.<Type>nil());
JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
Symbol next = lookupMethod(tree.expr.pos(),
names.next,
itvar.type,
List.<Type>nil());
JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
if (iteratorTarget != syms.objectType)
vardefinit = make.TypeCast(iteratorTarget, vardefinit);
JCVariableDecl indexDef = make.VarDef(tree.var.sym, vardefinit);
JCBlock body = make.Block(0, List.of(indexDef, tree.body));
result = translate(make.
ForLoop(List.of(init),
cond,
List.<JCExpressionStatement>nil(),
body));
patchTargets(body, tree, result);
}
public void visitVarDef(JCVariableDecl tree) {
MethodSymbol oldMethodSym = currentMethodSym;
tree.mods = translate(tree.mods);
tree.vartype = translate(tree.vartype);
if (currentMethodSym == null) {
// A class or instance field initializer.
currentMethodSym =
new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
names.empty, null,
currentClass);
}
if (tree.init != null) tree.init = translate(tree.init, tree.type);
result = tree;
currentMethodSym = oldMethodSym;
}
public void visitBlock(JCBlock tree) {
MethodSymbol oldMethodSym = currentMethodSym;
if (currentMethodSym == null) {
// Block is a static or instance initializer.
currentMethodSym =
new MethodSymbol(tree.flags | BLOCK,
names.empty, null,
currentClass);
}
super.visitBlock(tree);
currentMethodSym = oldMethodSym;
}
public void visitDoLoop(JCDoWhileLoop tree) {
tree.body = translate(tree.body);
tree.cond = translate(tree.cond, syms.booleanType);
result = tree;
}
public void visitWhileLoop(JCWhileLoop tree) {
tree.cond = translate(tree.cond, syms.booleanType);
tree.body = translate(tree.body);
result = tree;
}
public void visitForLoop(JCForLoop tree) {
tree.init = translate(tree.init);
if (tree.cond != null)
tree.cond = translate(tree.cond, syms.booleanType);
tree.step = translate(tree.step);
tree.body = translate(tree.body);
result = tree;
}
public void visitReturn(JCReturn tree) {
if (tree.expr != null)
tree.expr = translate(tree.expr,
types.erasure(currentMethodDef
.restype.type));
result = tree;
}
public void visitSwitch(JCSwitch tree) {
Type selsuper = types.supertype(tree.selector.type);
boolean enumSwitch = selsuper != null &&
(tree.selector.type.tsym.flags() & ENUM) != 0;
Type target = enumSwitch ? tree.selector.type : syms.intType;
tree.selector = translate(tree.selector, target);
tree.cases = translateCases(tree.cases);
if (enumSwitch) {
result = visitEnumSwitch(tree);
patchTargets(result, tree, result);
} else {
result = tree;
}
}
public JCTree visitEnumSwitch(JCSwitch tree) {
TypeSymbol enumSym = tree.selector.type.tsym;
EnumMapping map = mapForEnum(tree.pos(), enumSym);
make_at(tree.pos());
Symbol ordinalMethod = lookupMethod(tree.pos(),
names.ordinal,
tree.selector.type,
List.<Type>nil());
JCArrayAccess selector = make.Indexed(map.mapVar,
make.App(make.Select(tree.selector,
ordinalMethod)));
ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
for (JCCase c : tree.cases) {
if (c.pat != null) {
VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
JCLiteral pat = map.forConstant(label);
cases.append(make.Case(pat, c.stats));
} else {
cases.append(c);
}
}
return make.Switch(selector, cases.toList());
}
public void visitNewArray(JCNewArray tree) {
tree.elemtype = translate(tree.elemtype);
for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
if (t.head != null) t.head = translate(t.head, syms.intType);
tree.elems = translate(tree.elems, types.elemtype(tree.type));
result = tree;
}
public void visitSelect(JCFieldAccess tree) {
// need to special case-access of the form C.super.x
// these will always need an access method.
boolean qualifiedSuperAccess =
tree.selected.tag == JCTree.SELECT &&
TreeInfo.name(tree.selected) == names._super;
tree.selected = translate(tree.selected);
if (tree.name == names._class)
result = classOf(tree.selected);
else if (tree.name == names._this || tree.name == names._super)
result = makeThis(tree.pos(), tree.selected.type.tsym);
else
result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
}
public void visitLetExpr(LetExpr tree) {
tree.defs = translateVarDefs(tree.defs);
tree.expr = translate(tree.expr, tree.type);
result = tree;
}
// There ought to be nothing to rewrite here;
// we don't generate code.
public void visitAnnotation(JCAnnotation tree) {
result = tree;
}
/**************************************************************************
* main method
*************************************************************************/
/** Translate a toplevel class and return a list consisting of
* the translated class and translated versions of all inner classes.
* @param env The attribution environment current at the class definition.
* We need this for resolving some additional symbols.
* @param cdef The tree representing the class definition.
*/
public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
ListBuffer<JCTree> translated = null;
try {
attrEnv = env;
this.make = make;
endPositions = env.toplevel.endPositions;
currentClass = null;
currentMethodDef = null;
outermostClassDef = (cdef.tag == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
outermostMemberDef = null;
this.translated = new ListBuffer<JCTree>();
classdefs = new HashMap<ClassSymbol,JCClassDecl>();
actualSymbols = new HashMap<Symbol,Symbol>();
freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
proxies = new Scope(syms.noSymbol);
outerThisStack = List.nil();
accessNums = new HashMap<Symbol,Integer>();
accessSyms = new HashMap<Symbol,MethodSymbol[]>();
accessConstrs = new HashMap<Symbol,MethodSymbol>();
accessed = new ListBuffer<Symbol>();
translate(cdef, (JCExpression)null);
for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
makeAccessible(l.head);
for (EnumMapping map : enumSwitchMap.values())
map.translate();
translated = this.translated;
} finally {
// note that recursive invocations of this method fail hard
attrEnv = null;
this.make = null;
endPositions = null;
currentClass = null;
currentMethodDef = null;
outermostClassDef = null;
outermostMemberDef = null;
this.translated = null;
classdefs = null;
actualSymbols = null;
freevarCache = null;
proxies = null;
outerThisStack = null;
accessNums = null;
accessSyms = null;
accessConstrs = null;
accessed = null;
enumSwitchMap.clear();
}
return translated.toList();
}
//////////////////////////////////////////////////////////////
// The following contributed by Borland for bootstrapping purposes
//////////////////////////////////////////////////////////////
private void addEnumCompatibleMembers(JCClassDecl cdef) {
make_at(null);
// Add the special enum fields
VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
VarSymbol nameFieldSym = addEnumNameField(cdef);
// Add the accessor methods for name and ordinal
MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
// Add the toString method
addEnumToString(cdef, nameFieldSym);
// Add the compareTo method
addEnumCompareTo(cdef, ordinalFieldSym);
}
private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
names.fromString("$ordinal"),
syms.intType,
cdef.sym);
cdef.sym.members().enter(ordinal);
cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
return ordinal;
}
private VarSymbol addEnumNameField(JCClassDecl cdef) {
VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
names.fromString("$name"),
syms.stringType,
cdef.sym);
cdef.sym.members().enter(name);
cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
return name;
}
private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
// Add the accessor methods for ordinal
Symbol ordinalSym = lookupMethod(cdef.pos(),
names.ordinal,
cdef.type,
List.<Type>nil());
assert(ordinalSym != null);
assert(ordinalSym instanceof MethodSymbol);
JCStatement ret = make.Return(make.Ident(ordinalSymbol));
cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
make.Block(0L, List.of(ret))));
return (MethodSymbol)ordinalSym;
}
private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
// Add the accessor methods for name
Symbol nameSym = lookupMethod(cdef.pos(),
names._name,
cdef.type,
List.<Type>nil());
assert(nameSym != null);
assert(nameSym instanceof MethodSymbol);
JCStatement ret = make.Return(make.Ident(nameSymbol));
cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
make.Block(0L, List.of(ret))));
return (MethodSymbol)nameSym;
}
private MethodSymbol addEnumToString(JCClassDecl cdef,
VarSymbol nameSymbol) {
Symbol toStringSym = lookupMethod(cdef.pos(),
names.toString,
cdef.type,
List.<Type>nil());
JCTree toStringDecl = null;
if (toStringSym != null)
toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
if (toStringDecl != null)
return (MethodSymbol)toStringSym;
JCStatement ret = make.Return(make.Ident(nameSymbol));
JCTree resTypeTree = make.Type(syms.stringType);
MethodType toStringType = new MethodType(List.<Type>nil(),
syms.stringType,
List.<Type>nil(),
cdef.sym);
toStringSym = new MethodSymbol(PUBLIC,
names.toString,
toStringType,
cdef.type.tsym);
toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
make.Block(0L, List.of(ret)));
cdef.defs = cdef.defs.prepend(toStringDecl);
cdef.sym.members().enter(toStringSym);
return (MethodSymbol)toStringSym;
}
private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
Symbol compareToSym = lookupMethod(cdef.pos(),
names.compareTo,
cdef.type,
List.of(cdef.sym.type));
assert(compareToSym != null);
assert(compareToSym instanceof MethodSymbol);
JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
JCModifiers mod1 = make.Modifiers(0L);
Name oName = Name.fromString(names, "o");
JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
JCIdent paramId1 = make.Ident(names.java_lang_Object);
paramId1.type = cdef.type;
paramId1.sym = par1.sym;
((MethodSymbol)compareToSym).params = List.of(par1.sym);
JCIdent par1UsageId = make.Ident(par1.sym);
JCIdent castTargetIdent = make.Ident(cdef.sym);
JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
cast.setType(castTargetIdent.type);
Name otherName = Name.fromString(names, "other");
VarSymbol otherVarSym = new VarSymbol(mod1.flags,
otherName,
cdef.type,
compareToSym);
JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
blockStatements.append(otherVar);
JCIdent id1 = make.Ident(ordinalSymbol);
JCIdent fLocUsageId = make.Ident(otherVarSym);
JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
JCReturn ret = make.Return(bin);
blockStatements.append(ret);
JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
make.Block(0L,
blockStatements.toList()));
compareToMethod.params = List.of(par1);
cdef.defs = cdef.defs.append(compareToMethod);
return (MethodSymbol)compareToSym;
}
//////////////////////////////////////////////////////////////
// The above contributed by Borland for bootstrapping purposes
//////////////////////////////////////////////////////////////
}