/*
* #%L
* ImgLib2: a general-purpose, multidimensional image processing library.
* %%
* Copyright (C) 2009 - 2014 Stephan Preibisch, Tobias Pietzsch, Barry DeZonia,
* Stephan Saalfeld, Albert Cardona, Curtis Rueden, Christian Dietz, Jean-Yves
* Tinevez, Johannes Schindelin, Lee Kamentsky, Larry Lindsey, Grant Harris,
* Mark Hiner, Aivar Grislis, Martin Horn, Nick Perry, Michael Zinsmaier,
* Steffen Jaensch, Jan Funke, Mark Longair, and Dimiter Prodanov.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package net.imglib2.util;
import net.imglib2.Dimensions;
import net.imglib2.FinalInterval;
import net.imglib2.FinalRealInterval;
import net.imglib2.Interval;
import net.imglib2.Localizable;
import net.imglib2.RealInterval;
import net.imglib2.RealLocalizable;
/**
* Convenience methods for manipulating {@link Interval Intervals}.
*
* @author Tobias Pietzsch <tobias.pietzsch@gmail.com>
*/
public class Intervals
{
/**
* Create a {@link FinalInterval} from a parameter list comprising minimum
* coordinates and size. For example, to create a 2D interval from (10, 10)
* to (20, 40) use createMinSize( 10, 10, 11, 31 ).
*
* @param minsize
* a list of <em>2*n</em> parameters to create a <em>n</em>
* -dimensional interval. The first <em>n</em> parameters specify
* the minimum of the interval, the next <em>n</em> parameters
* specify the dimensions of the interval.
* @return interval with the specified boundaries
*/
public static FinalInterval createMinSize( final long... minsize )
{
return FinalInterval.createMinSize( minsize );
}
/**
* Create a {@link FinalInterval} from a parameter list comprising minimum
* and maximum coordinates. For example, to create a 2D interval from (10,
* 10) to (20, 40) use createMinMax( 10, 10, 20, 40 ).
*
* @param minmax
* a list of <em>2*n</em> parameters to create a <em>n</em>
* -dimensional interval. The first <em>n</em> parameters specify
* the minimum of the interval, the next <em>n</em> parameters
* specify the maximum of the interval.
* @return interval with the specified boundaries
*/
public static FinalInterval createMinMax( final long... minmax )
{
return FinalInterval.createMinMax( minmax );
}
/**
* Create a {@link FinalRealInterval} from a parameter list comprising
* minimum coordinates and size. For example, to create a 2D interval from
* (10, 10) to (20, 40) use createMinSize( 10, 10, 11, 31 ).
*
* @param minsize
* a list of <em>2*n</em> parameters to create a <em>n</em>
* -dimensional interval. The first <em>n</em> parameters specify
* the minimum of the interval, the next <em>n</em> parameters
* specify the dimensions of the interval.
* @return interval with the specified boundaries
*/
public static FinalRealInterval createMinSizeReal( final double... minsize )
{
return FinalRealInterval.createMinSize( minsize );
}
/**
* Create a {@link FinalRealInterval} from a parameter list comprising
* minimum and maximum coordinates. For example, to create a 2D interval
* from (10, 10) to (20, 40) use createMinMax( 10, 10, 20, 40 ).
*
* @param minmax
* a list of <em>2*n</em> parameters to create a <em>n</em>
* -dimensional interval. The first <em>n</em> parameters specify
* the minimum of the interval, the next <em>n</em> parameters
* specify the maximum of the interval.
* @return interval with the specified boundaries
*/
public static FinalRealInterval createMinMaxReal( final double... minmax )
{
return FinalRealInterval.createMinMax( minmax );
}
/**
* Grow/shrink an interval in all dimensions.
*
* Create a {@link FinalInterval} , which is the input interval plus border
* pixels on every side, in every dimension.
*
* @param interval
* the input interval
* @param border
* how many pixels to add on every side
* @return expanded interval
*/
public static FinalInterval expand( final Interval interval, final long border )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
for ( int d = 0; d < n; ++d )
{
min[ d ] -= border;
max[ d ] += border;
}
return new FinalInterval( min, max );
}
/**
* Grow/shrink an interval in one dimensions.
*
* Create a {@link FinalInterval} , which is the input interval plus border
* pixels on every side, in dimension d.
*
* @param interval
* the input interval
* @param border
* how many pixels to add on every side
* @param d
* in which dimension
* @return expanded interval
*/
public static FinalInterval expand( final Interval interval, final long border, final int d )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
min[ d ] -= border;
max[ d ] += border;
return new FinalInterval( min, max );
}
/**
* Translate an interval in one dimension.
*
* Create a {@link FinalInterval} , which is the input interval shifted by t
* in dimension d.
*
* @param interval
* the input interval
* @param t
* by how many pixels to shift the interval
* @param d
* in which dimension
* @return translated interval
*/
public static FinalInterval translate( final Interval interval, final long t, final int d )
{
final int n = interval.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
interval.min( min );
interval.max( max );
min[ d ] += t;
max[ d ] += t;
return new FinalInterval( min, max );
}
/**
* Compute the intersection of two intervals.
*
* Create a {@link FinalInterval} , which is the intersection of the input
* intervals (i.e., the area contained in both input intervals).
*
* @param intervalA
* input interval
* @param intervalB
* input interval
* @return intersection of input intervals
*/
public static FinalInterval intersect( final Interval intervalA, final Interval intervalB )
{
assert intervalA.numDimensions() == intervalB.numDimensions();
final int n = intervalA.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = Math.max( intervalA.min( d ), intervalB.min( d ) );
max[ d ] = Math.min( intervalA.max( d ), intervalB.max( d ) );
}
return new FinalInterval( min, max );
}
/**
* Compute the smallest {@link Interval} containing the specified
* {@link RealInterval}.
*
* @param ri
* input interval.
* @return the smallest integer interval that completely contains the input
* interval.
*/
public static Interval smallestContainingInterval( final RealInterval ri )
{
final int n = ri.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = ( long ) Math.floor( ri.realMin( d ) );
max[ d ] = ( long ) Math.ceil( ri.realMax( d ) );
}
return new FinalInterval( min, max );
}
/**
* Compute the largest {@link Interval} that is contained in the specified
* {@link RealInterval}.
*
* @param ri
* input interval.
* @return the largest integer interval that is completely contained in the
* input interval.
*/
public static Interval largestContainedInterval( final RealInterval ri )
{
final int n = ri.numDimensions();
final long[] min = new long[ n ];
final long[] max = new long[ n ];
for ( int d = 0; d < n; ++d )
{
min[ d ] = ( long ) Math.ceil( ri.realMin( d ) );
max[ d ] = ( long ) Math.floor( ri.realMax( d ) );
}
return new FinalInterval( min, max );
}
/**
* Check whether the given interval is empty, that is, the maximum is
* smaller than the minimum in some dimension.
*
* @param interval
* interval to check
* @return true when the interval is empty, that is, the maximum is smaller
* than the minimum in some dimension.
*/
public static boolean isEmpty( final Interval interval )
{
final int n = interval.numDimensions();
for ( int d = 0; d < n; ++d )
if ( interval.min( d ) > interval.max( d ) )
return true;
return false;
}
/**
* Test whether the {@code containing} interval contains the
* {@code contained} point. The interval is closed, that is, boundary points
* are contained.
*
* @return true, iff {@code contained} is in {@code containing}.
*/
public static boolean contains( final Interval containing, final Localizable contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
final long p = contained.getLongPosition( d );
if ( p < containing.min( d ) || p > containing.max( d ) )
return false;
}
return true;
}
/**
* Test whether the {@code containing} interval contains the
* {@code contained} point. The interval is closed, that is, boundary points
* are contained.
*
* @return true, iff {@code contained} is in {@code containing}.
*/
public static boolean contains( final RealInterval containing, final RealLocalizable contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
final double p = contained.getDoublePosition( d );
if ( p < containing.realMin( d ) || p > containing.realMax( d ) )
return false;
}
return true;
}
/**
* Test whether the {@code containing} interval completely contains the
* {@code contained} interval.
*/
final static public boolean contains( final Interval containing, final Interval contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
if ( containing.min( d ) > contained.min( d ) || containing.max( d ) < contained.max( d ) )
return false;
}
return true;
}
/**
* Test whether the {@code containing} interval completely contains the
* {@code contained} interval.
*/
final static public boolean contains( final RealInterval containing, final RealInterval contained )
{
assert containing.numDimensions() == contained.numDimensions();
final int n = containing.numDimensions();
for ( int d = 0; d < n; ++d )
{
if ( containing.realMin( d ) > contained.realMin( d ) || containing.realMax( d ) < contained.realMax( d ) )
return false;
}
return true;
}
/**
* Compute the number of elements contained in an (integer) {@link Interval}
* .
*
* @return number of elements in {@code interval}.
*/
public static long numElements( final Dimensions interval )
{
long numPixels = interval.dimension( 0 );
final int n = interval.numDimensions();
for ( int d = 1; d < n; ++d )
numPixels *= interval.dimension( d );
return numPixels;
}
/**
* Tests weather two intervals are equal in their min / max
*/
public static boolean equals( final Interval a, final Interval b )
{
if ( a.numDimensions() != b.numDimensions() )
return false;
for ( int d = 0; d < a.numDimensions(); ++d )
if ( a.min( d ) != b.min( d ) || a.max( d ) != b.max( d ) )
return false;
return true;
}
/**
* Tests weather two intervals have equal dimensions (same size)
*/
public static boolean equalDimensions( final Interval a, final Interval b )
{
if ( a.numDimensions() != b.numDimensions() )
return false;
for ( int d = 0; d < a.numDimensions(); ++d )
if ( a.dimension( d ) != b.dimension( d ) )
return false;
return true;
}
/**
* Create a <code>long[]</code> with the dimensions of a {@link Dimensions}.
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See
* {@link Dimensions#dimensions(long[])}.
* </p>
*
* @param dimensions
* something which has dimensions
*
* @return dimensions as a new <code>long[]</code>
*/
public static long[] dimensionsAsLongArray( final Dimensions dimensions )
{
final long[] dims = new long[ dimensions.numDimensions() ];
dimensions.dimensions( dims );
return dims;
}
/**
* Create a <code>int[]</code> with the dimensions of an {@link Interval}.
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly.
* </p>
*
* @param dimensions
* something which has dimensions
*
* @return dimensions as a new <code>int[]</code>
*/
public static int[] dimensionsAsIntArray( final Dimensions dimensions )
{
final int n = dimensions.numDimensions();
final int[] dims = new int[ n ];
for ( int d = 0; d < n; ++d )
dims[ d ] = ( int ) dimensions.dimension( d );
return dims;
}
/**
* Create a <code>long[]</code> with the minimum of an {@link Interval}.
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See {@link Interval#min(long[])}.
* </p>
*
* @param interval
* something with interval boundaries
*
* @return minimum as a new <code>long[]</code>
*/
public static long[] minAsLongArray( final Interval interval )
{
final long[] min = new long[ interval.numDimensions() ];
interval.min( min );
return min;
}
/**
* Create a <code>int[]</code> with the minimum of an {@link Interval}.
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly.
* </p>
*
* @param interval
* something with interval boundaries
*
* @return minimum as a new <code>int[]</code>
*/
public static int[] minAsIntArray( final Interval interval )
{
final int n = interval.numDimensions();
final int[] min = new int[ n ];
for ( int d = 0; d < n; ++d )
min[ d ] = ( int ) interval.min( d );
return min;
}
/**
* Create a <code>long[]</code> with the maximum of an {@link Interval}.
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See {@link Interval#max(long[])}.
* </p>
*
* @param interval
* something with interval boundaries
*
* @return maximum as a new <code>long[]</code>
*/
public static long[] maxAsLongArray( final Interval interval )
{
final long[] max = new long[ interval.numDimensions() ];
interval.max( max );
return max;
}
/**
* Create a <code>int[]</code> with the maximum of an {@link Interval}.
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly.
* </p>
*
* @param interval
* something with interval boundaries
*
* @return maximum as a new <code>int[]</code>
*/
public static int[] maxAsIntArray( final Interval interval )
{
final int n = interval.numDimensions();
final int[] max = new int[ n ];
for ( int d = 0; d < n; ++d )
max[ d ] = ( int ) interval.max( d );
return max;
}
/**
* Create a <code>double[]</code> with the maximum of a {@link RealInterval}
* .
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See
* {@link RealInterval#realMax(double[])}.
* </p>
*
* @param interval
* something with interval boundaries
*
* @return maximum as a new double[]
*/
public static double[] maxAsDoubleArray( final RealInterval interval )
{
final double[] max = new double[ interval.numDimensions() ];
interval.realMax( max );
return max;
}
/**
* Create a <code>double[]</code> with the minimum of a {@link RealInterval}
* .
*
* <p>
* Keep in mind that creating arrays wildly is not good practice and
* consider using the interval directly. See
* {@link RealInterval#realMin(double[])}.
* </p>
*
* @param interval
* something with interval boundaries
*
* @return minimum as a new double[]
*/
public static double[] minAsDoubleArray( final RealInterval interval )
{
final double[] min = new double[ interval.numDimensions() ];
interval.realMin( min );
return min;
}
}