package fcagnin.jgltut.tut09;
import fcagnin.jglsdk.BufferableData;
import fcagnin.jglsdk.glm.*;
import fcagnin.jglsdk.glutil.MatrixStack;
import fcagnin.jglsdk.glutil.MousePoles.*;
import fcagnin.jgltut.LWJGLWindow;
import fcagnin.jgltut.framework.Framework;
import fcagnin.jgltut.framework.Mesh;
import fcagnin.jgltut.framework.MousePole;
import org.lwjgl.BufferUtils;
import org.lwjgl.input.Keyboard;
import org.lwjgl.input.Mouse;
import java.nio.FloatBuffer;
import java.util.ArrayList;
import static org.lwjgl.opengl.GL11.*;
import static org.lwjgl.opengl.GL15.*;
import static org.lwjgl.opengl.GL20.*;
import static org.lwjgl.opengl.GL30.glBindBufferRange;
import static org.lwjgl.opengl.GL31.*;
import static org.lwjgl.opengl.GL32.GL_DEPTH_CLAMP;
/**
* Visit https://github.com/integeruser/jgltut for info, updates and license terms.
* <p/>
* Part III. Illumination
* Chapter 9. Lights On
* http://www.arcsynthesis.org/gltut/Illumination/Tutorial%2009.html
* <p/>
* SPACE - toggle between drawing the uncolored cylinder and the colored one.
* T - toggle between properly using the inverse-transpose and not using the inverse transpose.
* <p/>
* LEFT CLICKING and DRAGGING - rotate the camera around the target point, both horizontally and vertically.
* LEFT CLICKING and DRAGGING + CTRL - rotate the camera around the target point, either horizontally or vertically.
* LEFT CLICKING and DRAGGING + ALT - change the camera's up direction.
* RIGHT CLICKING and DRAGGING - rotate the object horizontally and vertically, relative to the current camera
* view.
* RIGHT CLICKING and DRAGGING + CTRL - rotate the object horizontally or vertically only, relative to the current
* camera view.
* RIGHT CLICKING and DRAGGING + ALT - spin the object.
* WHEEL SCROLLING - move the camera closer to it's target point or farther away.
*
* @author integeruser
*/
public class ScaleAndLighting extends LWJGLWindow {
public static void main(String[] args) {
Framework.CURRENT_TUTORIAL_DATAPATH = "/fcagnin/jgltut/tut09/data/";
new ScaleAndLighting().start();
}
@Override
protected void init() {
initializeProgram();
try {
cylinderMesh = new Mesh( "UnitCylinder.xml" );
planeMesh = new Mesh( "LargePlane.xml" );
} catch ( Exception exception ) {
exception.printStackTrace();
System.exit( -1 );
}
glEnable( GL_CULL_FACE );
glCullFace( GL_BACK );
glFrontFace( GL_CW );
glEnable( GL_DEPTH_TEST );
glDepthMask( true );
glDepthFunc( GL_LEQUAL );
glDepthRange( 0.0f, 1.0f );
glEnable( GL_DEPTH_CLAMP );
projectionUniformBuffer = glGenBuffers();
glBindBuffer( GL_UNIFORM_BUFFER, projectionUniformBuffer );
glBufferData( GL_UNIFORM_BUFFER, ProjectionBlock.SIZE, GL_DYNAMIC_DRAW );
// Bind the static buffers.
glBindBufferRange( GL_UNIFORM_BUFFER, projectionBlockIndex, projectionUniformBuffer, 0, ProjectionBlock.SIZE );
glBindBuffer( GL_UNIFORM_BUFFER, 0 );
}
@Override
protected void display() {
glClearColor( 0.0f, 0.0f, 0.0f, 0.0f );
glClearDepth( 1.0f );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
MatrixStack modelMatrix = new MatrixStack();
modelMatrix.setMatrix( viewPole.calcMatrix() );
Vec4 lightDirCameraSpace = Mat4.mul( modelMatrix.top(), lightDirection );
glUseProgram( whiteDiffuseColor.theProgram );
glUniform3( whiteDiffuseColor.dirToLightUnif, lightDirCameraSpace.fillAndFlipBuffer( vec4Buffer ) );
glUseProgram( vertexDiffuseColor.theProgram );
glUniform3( vertexDiffuseColor.dirToLightUnif, lightDirCameraSpace.fillAndFlipBuffer( vec4Buffer ) );
glUseProgram( 0 );
{
modelMatrix.push();
// Render the ground plane.
{
modelMatrix.push();
glUseProgram( whiteDiffuseColor.theProgram );
glUniformMatrix4( whiteDiffuseColor.modelToCameraMatrixUnif, false,
modelMatrix.top().fillAndFlipBuffer( mat4Buffer ) );
Mat3 normMatrix = new Mat3( modelMatrix.top() );
glUniformMatrix3( whiteDiffuseColor.normalModelToCameraMatrixUnif, false,
normMatrix.fillAndFlipBuffer( mat3Buffer ) );
glUniform4f( whiteDiffuseColor.lightIntensityUnif, 1.0f, 1.0f, 1.0f, 1.0f );
planeMesh.render();
glUseProgram( 0 );
modelMatrix.pop();
}
// Render the Cylinder
{
modelMatrix.push();
modelMatrix.applyMatrix( objtPole.calcMatrix() );
if ( scaleCyl ) {
modelMatrix.scale( 1.0f, 1.0f, 0.2f );
}
glUseProgram( vertexDiffuseColor.theProgram );
glUniformMatrix4( vertexDiffuseColor.modelToCameraMatrixUnif, false,
modelMatrix.top().fillAndFlipBuffer( mat4Buffer ) );
Mat3 normMatrix = new Mat3( modelMatrix.top() );
if ( doInvTranspose ) {
normMatrix = Glm.transpose( Glm.inverse( normMatrix ) );
}
glUniformMatrix3( vertexDiffuseColor.normalModelToCameraMatrixUnif, false,
normMatrix.fillAndFlipBuffer( mat3Buffer ) );
glUniform4f( vertexDiffuseColor.lightIntensityUnif, 1.0f, 1.0f, 1.0f, 1.0f );
cylinderMesh.render( "lit-color" );
glUseProgram( 0 );
modelMatrix.pop();
}
modelMatrix.pop();
}
}
@Override
protected void reshape(int w, int h) {
MatrixStack persMatrix = new MatrixStack();
persMatrix.perspective( 45.0f, (w / (float) h), zNear, zFar );
ProjectionBlock projData = new ProjectionBlock();
projData.cameraToClipMatrix = persMatrix.top();
glBindBuffer( GL_UNIFORM_BUFFER, projectionUniformBuffer );
glBufferSubData( GL_UNIFORM_BUFFER, 0, projData.fillAndFlipBuffer( mat4Buffer ) );
glBindBuffer( GL_UNIFORM_BUFFER, 0 );
glViewport( 0, 0, w, h );
}
@Override
protected void update() {
while ( Mouse.next() ) {
int eventButton = Mouse.getEventButton();
if ( eventButton != -1 ) {
boolean pressed = Mouse.getEventButtonState();
MousePole.forwardMouseButton( viewPole, eventButton, pressed, Mouse.getX(), Mouse.getY() );
MousePole.forwardMouseButton( objtPole, eventButton, pressed, Mouse.getX(), Mouse.getY() );
} else {
// Mouse moving or mouse scrolling
int dWheel = Mouse.getDWheel();
if ( dWheel != 0 ) {
MousePole.forwardMouseWheel( viewPole, dWheel, dWheel, Mouse.getX(), Mouse.getY() );
MousePole.forwardMouseWheel( objtPole, dWheel, dWheel, Mouse.getX(), Mouse.getY() );
}
if ( Mouse.isButtonDown( 0 ) || Mouse.isButtonDown( 1 ) || Mouse.isButtonDown( 2 ) ) {
MousePole.forwardMouseMotion( viewPole, Mouse.getX(), Mouse.getY() );
MousePole.forwardMouseMotion( objtPole, Mouse.getX(), Mouse.getY() );
}
}
}
while ( Keyboard.next() ) {
if ( Keyboard.getEventKeyState() ) {
switch ( Keyboard.getEventKey() ) {
case Keyboard.KEY_SPACE:
scaleCyl = !scaleCyl;
break;
case Keyboard.KEY_T:
doInvTranspose = !doInvTranspose;
if ( doInvTranspose ) {
System.out.printf( "Doing Inverse Transpose.\n" );
} else {
System.out.printf( "Bad lighting.\n" );
}
break;
case Keyboard.KEY_ESCAPE:
leaveMainLoop();
break;
}
}
}
}
////////////////////////////////
private float zNear = 1.0f;
private float zFar = 1000.0f;
private ProgramData whiteDiffuseColor;
private ProgramData vertexDiffuseColor;
private class ProgramData {
int theProgram;
int dirToLightUnif;
int lightIntensityUnif;
int modelToCameraMatrixUnif;
int normalModelToCameraMatrixUnif;
}
private FloatBuffer vec4Buffer = BufferUtils.createFloatBuffer( Vec4.SIZE );
private FloatBuffer mat3Buffer = BufferUtils.createFloatBuffer( Mat3.SIZE );
private FloatBuffer mat4Buffer = BufferUtils.createFloatBuffer( Mat4.SIZE );
private void initializeProgram() {
whiteDiffuseColor = loadProgram( "DirVertexLighting_PN.vert", "ColorPassthrough.frag" );
vertexDiffuseColor = loadProgram( "DirVertexLighting_PCN.vert", "ColorPassthrough.frag" );
}
private ProgramData loadProgram(String vertexShaderFileName, String fragmentShaderFileName) {
ArrayList<Integer> shaderList = new ArrayList<>();
shaderList.add( Framework.loadShader( GL_VERTEX_SHADER, vertexShaderFileName ) );
shaderList.add( Framework.loadShader( GL_FRAGMENT_SHADER, fragmentShaderFileName ) );
ProgramData data = new ProgramData();
data.theProgram = Framework.createProgram( shaderList );
data.modelToCameraMatrixUnif = glGetUniformLocation( data.theProgram, "modelToCameraMatrix" );
data.normalModelToCameraMatrixUnif = glGetUniformLocation( data.theProgram, "normalModelToCameraMatrix" );
data.dirToLightUnif = glGetUniformLocation( data.theProgram, "dirToLight" );
data.lightIntensityUnif = glGetUniformLocation( data.theProgram, "lightIntensity" );
int projectionBlock = glGetUniformBlockIndex( data.theProgram, "Projection" );
glUniformBlockBinding( data.theProgram, projectionBlock, projectionBlockIndex );
return data;
}
////////////////////////////////
private Mesh cylinderMesh;
private Mesh planeMesh;
private Vec4 lightDirection = new Vec4( 0.866f, 0.5f, 0.0f, 0.0f );
private boolean doInvTranspose = true;
private boolean scaleCyl;
////////////////////////////////
// View / Object setup.
private ViewData initialViewData = new ViewData(
new Vec3( 0.0f, 0.5f, 0.0f ),
new Quaternion( 0.92387953f, 0.3826834f, 0.0f, 0.0f ),
5.0f,
0.0f
);
private ViewScale viewScale = new ViewScale(
3.0f, 20.0f,
1.5f, 0.5f,
0.0f, 0.0f, // No camera movement.
90.0f / 250.0f
);
private ObjectData initialObjectData = new ObjectData(
new Vec3( 0.0f, 0.5f, 0.0f ),
new Quaternion( 1.0f, 0.0f, 0.0f, 0.0f )
);
private ViewPole viewPole = new ViewPole( initialViewData, viewScale, MouseButtons.MB_LEFT_BTN );
private ObjectPole objtPole = new ObjectPole( initialObjectData, 90.0f / 250.0f, MouseButtons.MB_RIGHT_BTN,
viewPole );
////////////////////////////////
private final int projectionBlockIndex = 2;
private int projectionUniformBuffer;
private class ProjectionBlock extends BufferableData<FloatBuffer> {
Mat4 cameraToClipMatrix;
static final int SIZE = Mat4.SIZE;
@Override
public FloatBuffer fillBuffer(FloatBuffer buffer) {
return cameraToClipMatrix.fillBuffer( buffer );
}
}
}