Package com.mapr.stats.random

Source Code of com.mapr.stats.random.GammaNormalDistribution

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package com.mapr.stats.random;

import org.apache.mahout.common.RandomUtils;
import org.apache.mahout.math.jet.random.AbstractContinousDistribution;
import org.apache.mahout.math.jet.random.Gamma;
import org.apache.mahout.math.jet.random.Normal;

import java.util.Random;

/**
* Samples from a Gamma-Normal distribution.  Provision is made for adding
* observations to update the posterior distribution.
*
* The Gamma-Normal distribution uses a Gamma distribution for the distribution of the
* variance, a normal distribution for the distribution of the mean conditional
* on the variance and another normal distribution for the samples conditional
* on the mean and standard deviation.  That is,
* \[
* 1/\sigma^2 \sim \Gamma(n / 2, s/2) \\
* \mu \sim \mathcal N \left(m, \sqrt{\sigma^2/n}\right) \\
* x \sim \mathcal N(\mu, \sigma)
* \]
* In this form, \(n\) is the number of samples seen so far and \(s\) is the total squared
* deviation from the empirical mean.
*/
public class GammaNormalDistribution extends AbstractBayesianDistribution {
    private Random gen = RandomUtils.getRandom();
    private double m, n;
    private double ss;
    private final Gamma gd = new Gamma(1, 1, gen);
    private final Normal nd = new Normal(0, 1, gen);

    public GammaNormalDistribution(double m, double n, double sd, Random gen) {
        this.gen = gen;
        this.m = m;
        this.n = n;
        this.ss = sd * sd;
    }

    /**
     * Returns a random number from the distribution.
     *
     * @return A new sample from this distribution.
     */
    @Override
    public double nextDouble() {
        double variance = nextVariance();
        double mean = nd.nextDouble() * Math.sqrt(variance / n) + m;
        return nd.nextDouble() * Math.sqrt(variance) + mean;
    }

    /**
     * Adds an observed sample \(x\) to the distribution.
     *
     * @param x The observed sample.
     */
    @Override
    public void add(double x) {
        n += 1;
        final double delta = (x - m);
        m += delta / n;
        ss = ss + delta * (x - m);
    }

    @Override
    public double nextMean() {
        double sd = Math.sqrt(nextVariance() / n);
        return nd.nextDouble() * sd + m;
    }

    @Override
    public AbstractContinousDistribution posteriorDistribution() {
        return new Normal(m, Math.sqrt(ss / n), gen);
    }

    @Override
    public double getMean() {
        return m;
    }

    @Override
    public double getSamples() {
        return n;
    }

    public double nextSD() {
        return Math.sqrt(nextVariance());
    }

    private double nextVariance() {
        return 1 / gd.nextDouble(n / 2, ss / 2);
    }
}
TOP

Related Classes of com.mapr.stats.random.GammaNormalDistribution

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.