Package org.jbox2d.dynamics

Source Code of org.jbox2d.dynamics.WorldQueryWrapper

/*******************************************************************************
* Copyright (c) 2011, Daniel Murphy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*     * Redistributions of source code must retain the above copyright
*       notice, this list of conditions and the following disclaimer.
*     * Redistributions in binary form must reproduce the above copyright
*       notice, this list of conditions and the following disclaimer in the
*       documentation and/or other materials provided with the distribution.
*     * Neither the name of the <organization> nor the
*       names of its contributors may be used to endorse or promote products
*       derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL DANIEL MURPHY BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
package org.jbox2d.dynamics;

import org.jbox2d.callbacks.ContactFilter;
import org.jbox2d.callbacks.ContactListener;
import org.jbox2d.callbacks.DebugDraw;
import org.jbox2d.callbacks.DestructionListener;
import org.jbox2d.callbacks.QueryCallback;
import org.jbox2d.callbacks.RayCastCallback;
import org.jbox2d.callbacks.TreeCallback;
import org.jbox2d.callbacks.TreeRayCastCallback;
import org.jbox2d.collision.AABB;
import org.jbox2d.collision.RayCastInput;
import org.jbox2d.collision.RayCastOutput;
import org.jbox2d.collision.TimeOfImpact.TOIInput;
import org.jbox2d.collision.TimeOfImpact.TOIOutput;
import org.jbox2d.collision.TimeOfImpact.TOIOutputState;
import org.jbox2d.collision.broadphase.BroadPhase;
import org.jbox2d.collision.broadphase.DynamicTreeNode;
import org.jbox2d.collision.shapes.CircleShape;
import org.jbox2d.collision.shapes.PolygonShape;
import org.jbox2d.collision.shapes.ShapeType;
import org.jbox2d.common.Color3f;
import org.jbox2d.common.Settings;
import org.jbox2d.common.Sweep;
import org.jbox2d.common.Transform;
import org.jbox2d.common.Vec2;
import org.jbox2d.dynamics.contacts.Contact;
import org.jbox2d.dynamics.contacts.ContactEdge;
import org.jbox2d.dynamics.contacts.ContactRegister;
import org.jbox2d.dynamics.contacts.TOISolver;
import org.jbox2d.dynamics.joints.Joint;
import org.jbox2d.dynamics.joints.JointDef;
import org.jbox2d.dynamics.joints.JointEdge;
import org.jbox2d.dynamics.joints.PulleyJoint;
import org.jbox2d.pooling.IDynamicStack;
import org.jbox2d.pooling.IWorldPool;
import org.jbox2d.pooling.WorldPool;
import org.jbox2d.pooling.arrays.Vec2Array;

/**
* The world class manages all physics entities, dynamic simulation,
* and asynchronous queries. The world also contains efficient memory
* management facilities.
*
* @author Daniel Murphy
*/
public class World {
  public static final int WORLD_POOL_SIZE = 100;
  public static final int WORLD_POOL_CONTAINER_SIZE = 10;
 
  public static final int NEW_FIXTURE = 0x0001;
  public static final int LOCKED = 0x0002;
  public static final int CLEAR_FORCES = 0x0004;
 
 
  // statistics gathering
  public int activeContacts = 0;
  public int contactPoolCount = 0;
 
  protected int m_flags;
 
  protected ContactManager m_contactManager;
 
  private Body m_bodyList;
  private Joint m_jointList;
 
  private int m_bodyCount;
  private int m_jointCount;
 
  private final Vec2 m_gravity = new Vec2();
  private boolean m_allowSleep;
 
  // private Body m_groundBody;
 
  private DestructionListener m_destructionListener;
  private DebugDraw m_debugDraw;
 
  private final IWorldPool pool;
 
  /**
   * This is used to compute the time step ratio to
   * support a variable time step.
   */
  private float m_inv_dt0;
 
  /**
   * This is for debugging the solver.
   */
  private boolean m_warmStarting;
 
  /**
   * This is for debugging the solver.
   */
  private boolean m_continuousPhysics;
 
  private ContactRegister[][] contactStacks = new ContactRegister[ShapeType.TYPE_COUNT][ShapeType.TYPE_COUNT];
 
  public World(Vec2 gravity, boolean doSleep){
    this(gravity, doSleep,
        new WorldPool(WORLD_POOL_SIZE, WORLD_POOL_CONTAINER_SIZE));
  }
 
  /**
   * Construct a world object.
   *
   * @param gravity
   *            the world gravity vector.
   * @param doSleep
   *            improve performance by not simulating inactive bodies.
   */
  public World(Vec2 gravity, boolean doSleep, IWorldPool argPool) {
    pool = argPool;
    m_destructionListener = null;
    m_debugDraw = null;
   
    m_bodyList = null;
    m_jointList = null;
   
    m_bodyCount = 0;
    m_jointCount = 0;
   
    m_warmStarting = true;
    m_continuousPhysics = true;
   
    m_allowSleep = doSleep;
    m_gravity.set(gravity);
   
    m_flags = CLEAR_FORCES;
   
    m_inv_dt0 = 0f;
   
    m_contactManager = new ContactManager(this);
   
    initializeRegisters();
  }
 
  private void addType(IDynamicStack<Contact> creator, ShapeType type1,
      ShapeType type2) {
    ContactRegister register = new ContactRegister();
    register.creator = creator;
    register.primary = true;
    contactStacks[type1.intValue][type2.intValue] = register;

    if (type1 != type2) {
      ContactRegister register2 = new ContactRegister();
      register2.creator = creator;
      register2.primary = false;
      contactStacks[type2.intValue][type1.intValue] = register2;
    }
  }

  private void initializeRegisters() {
    addType(pool.getCircleContactStack(), ShapeType.CIRCLE, ShapeType.CIRCLE);
    addType(pool.getPolyCircleContactStack(), ShapeType.POLYGON, ShapeType.CIRCLE);
    addType(pool.getPolyContactStack(), ShapeType.POLYGON, ShapeType.POLYGON);
  }

  public Contact popContact(Fixture fixtureA, Fixture fixtureB) {
    final ShapeType type1 = fixtureA.getType();
    final ShapeType type2 = fixtureB.getType();

    final ContactRegister reg = contactStacks[type1.intValue][type2.intValue];
    final IDynamicStack<Contact> creator = reg.creator;
    if (creator != null) {
      if (reg.primary) {
        Contact c = creator.pop();
        c.init(fixtureA, fixtureB);
        return c;
      } else {
        Contact c = creator.pop();
        c.init(fixtureB, fixtureA);
        return c;
      }
    } else {
      return null;
    }
  }

  public void pushContact(Contact contact) {

    if (contact.m_manifold.pointCount > 0) {
      contact.getFixtureA().getBody().setAwake(true);
      contact.getFixtureB().getBody().setAwake(true);
    }

    ShapeType type1 = contact.getFixtureA().getType();
    ShapeType type2 = contact.getFixtureB().getType();

    IDynamicStack<Contact> creator = contactStacks[type1.intValue][type2.intValue].creator;
    creator.push(contact);
  }
 
  public IWorldPool getPool() {
    return pool;
  }
 
  /**
   * Register a destruction listener. The listener is owned by you and must
   * remain in scope.
   *
   * @param listener
   */
  public void setDestructionListener(DestructionListener listener) {
    m_destructionListener = listener;
  }
 
  /**
   * Register a contact filter to provide specific control over collision.
   * Otherwise the default filter is used (_defaultFilter). The listener is
   * owned by you and must remain in scope.
   *
   * @param filter
   */
  public void setContactFilter(ContactFilter filter) {
    m_contactManager.m_contactFilter = filter;
  }
 
  /**
   * Register a contact event listener. The listener is owned by you and must
   * remain in scope.
   *
   * @param listener
   */
  public void setContactListener(ContactListener listener) {
    m_contactManager.m_contactListener = listener;
  }
 
  /**
   * Register a routine for debug drawing. The debug draw functions are called
   * inside with World.DrawDebugData method. The debug draw object is owned
   * by you and must remain in scope.
   *
   * @param debugDraw
   */
  public void setDebugDraw(DebugDraw debugDraw) {
    m_debugDraw = debugDraw;
  }
 
  /**
   * create a rigid body given a definition. No reference to the definition
   * is retained.
   *
   * @warning This function is locked during callbacks.
   * @param def
   * @return
   */
  public Body createBody(BodyDef def) {
    assert (isLocked() == false);
    if (isLocked()) {
      return null;
    }
    // TODO djm pooling
    Body b = new Body(def, this);
   
    // add to world doubly linked list
    b.m_prev = null;
    b.m_next = m_bodyList;
    if (m_bodyList != null) {
      m_bodyList.m_prev = b;
    }
    m_bodyList = b;
    ++m_bodyCount;
   
    return b;
  }
 
  /**
   * destroy a rigid body given a definition. No reference to the definition
   * is retained. This function is locked during callbacks.
   *
   * @warning This automatically deletes all associated shapes and joints.
   * @warning This function is locked during callbacks.
   * @param body
   */
  public void destroyBody(Body body) {
    assert (m_bodyCount > 0);
    assert (isLocked() == false);
    if (isLocked()) {
      return;
    }
   
    // Delete the attached joints.
    JointEdge je = body.m_jointList;
    while (je != null) {
      JointEdge je0 = je;
      je = je.next;
      if (m_destructionListener != null) {
        m_destructionListener.sayGoodbye(je0.joint);
      }
     
      destroyJoint(je0.joint);
    }
    body.m_jointList = null;
   
    // Delete the attached contacts.
    ContactEdge ce = body.m_contactList;
    while (ce != null) {
      ContactEdge ce0 = ce;
      ce = ce.next;
      m_contactManager.destroy(ce0.contact);
    }
    body.m_contactList = null;
   
    Fixture f = body.m_fixtureList;
    while (f != null) {
      Fixture f0 = f;
      f = f.m_next;
     
      if (m_destructionListener != null) {
        m_destructionListener.sayGoodbye(f0);
      }
     
      f0.destroyProxy(m_contactManager.m_broadPhase);
      f0.destroy();
      // TODO djm recycle fixtures (here or in that destroy method)
    }
    body.m_fixtureList = null;
    body.m_fixtureCount = 0;
   
    // Remove world body list.
    if (body.m_prev != null) {
      body.m_prev.m_next = body.m_next;
    }
   
    if (body.m_next != null) {
      body.m_next.m_prev = body.m_prev;
    }
   
    if (body == m_bodyList) {
      m_bodyList = body.m_next;
    }
   
    --m_bodyCount;
    // TODO djm recycle body
  }
 
  /**
   * create a joint to constrain bodies together. No reference to the definition
   * is retained. This may cause the connected bodies to cease colliding.
   *
   * @warning This function is locked during callbacks.
   * @param def
   * @return
   */
  public Joint createJoint(JointDef def) {
    assert (isLocked() == false);
    if (isLocked()) {
      return null;
    }
   
    Joint j = Joint.create(this, def);
   
    // Connect to the world list.
    j.m_prev = null;
    j.m_next = m_jointList;
    if (m_jointList != null) {
      m_jointList.m_prev = j;
    }
    m_jointList = j;
    ++m_jointCount;
   
    // Connect to the bodies' doubly linked lists.
    j.m_edgeA.joint = j;
    j.m_edgeA.other = j.m_bodyB;
    j.m_edgeA.prev = null;
    j.m_edgeA.next = j.m_bodyA.m_jointList;
    if (j.m_bodyA.m_jointList != null) {
      j.m_bodyA.m_jointList.prev = j.m_edgeA;
    }
    j.m_bodyA.m_jointList = j.m_edgeA;
   
    j.m_edgeB.joint = j;
    j.m_edgeB.other = j.m_bodyA;
    j.m_edgeB.prev = null;
    j.m_edgeB.next = j.m_bodyB.m_jointList;
    if (j.m_bodyB.m_jointList != null) {
      j.m_bodyB.m_jointList.prev = j.m_edgeB;
    }
    j.m_bodyB.m_jointList = j.m_edgeB;
   
    Body bodyA = def.bodyA;
    Body bodyB = def.bodyB;
   
    // If the joint prevents collisions, then flag any contacts for filtering.
    if (def.collideConnected == false) {
      ContactEdge edge = bodyB.getContactList();
      while (edge != null) {
        if (edge.other == bodyA) {
          // Flag the contact for filtering at the next time step (where either
          // body is awake).
          edge.contact.flagForFiltering();
        }
       
        edge = edge.next;
      }
    }
   
    // Note: creating a joint doesn't wake the bodies.
   
    return j;
  }
 
  /**
   * destroy a joint. This may cause the connected bodies to begin colliding.
   *
   * @warning This function is locked during callbacks.
   * @param joint
   */
  public void destroyJoint(Joint j) {
    assert (isLocked() == false);
    if (isLocked()) {
      return;
    }
   
    boolean collideConnected = j.m_collideConnected;
   
    // Remove from the doubly linked list.
    if (j.m_prev != null) {
      j.m_prev.m_next = j.m_next;
    }
   
    if (j.m_next != null) {
      j.m_next.m_prev = j.m_prev;
    }
   
    if (j == m_jointList) {
      m_jointList = j.m_next;
    }
   
    // Disconnect from island graph.
    Body bodyA = j.m_bodyA;
    Body bodyB = j.m_bodyB;
   
    // Wake up connected bodies.
    bodyA.setAwake(true);
    bodyB.setAwake(true);
   
    // Remove from body 1.
    if (j.m_edgeA.prev != null) {
      j.m_edgeA.prev.next = j.m_edgeA.next;
    }
   
    if (j.m_edgeA.next != null) {
      j.m_edgeA.next.prev = j.m_edgeA.prev;
    }
   
    if (j.m_edgeA == bodyA.m_jointList) {
      bodyA.m_jointList = j.m_edgeA.next;
    }
   
    j.m_edgeA.prev = null;
    j.m_edgeA.next = null;
   
    // Remove from body 2
    if (j.m_edgeB.prev != null) {
      j.m_edgeB.prev.next = j.m_edgeB.next;
    }
   
    if (j.m_edgeB.next != null) {
      j.m_edgeB.next.prev = j.m_edgeB.prev;
    }
   
    if (j.m_edgeB == bodyB.m_jointList) {
      bodyB.m_jointList = j.m_edgeB.next;
    }
   
    j.m_edgeB.prev = null;
    j.m_edgeB.next = null;
   
    Joint.destroy(j);
   
    assert (m_jointCount > 0);
    --m_jointCount;
   
    // If the joint prevents collisions, then flag any contacts for filtering.
    if (collideConnected == false) {
      ContactEdge edge = bodyB.getContactList();
      while (edge != null) {
        if (edge.other == bodyA) {
          // Flag the contact for filtering at the next time step (where either
          // body is awake).
          edge.contact.flagForFiltering();
        }
       
        edge = edge.next;
      }
    }
  }
 
  // djm pooling
  private final TimeStep step = new TimeStep();
 
  /**
   * Take a time step. This performs collision detection, integration,
   * and constraint solution.
   *
   * @param timeStep
   *            the amount of time to simulate, this should not vary.
   * @param velocityIterations
   *            for the velocity constraint solver.
   * @param positionIterations
   *            for the position constraint solver.
   */
  public void step(float dt, int velocityIterations, int positionIterations) {
    // log.debug("Starting step");
    // If new fixtures were added, we need to find the new contacts.
    if ((m_flags & NEW_FIXTURE) == NEW_FIXTURE) {
      // log.debug("There's a new fixture, lets look for new contacts");
      m_contactManager.findNewContacts();
      m_flags &= ~NEW_FIXTURE;
    }
   
    m_flags |= LOCKED;
   
    step.dt = dt;
    step.velocityIterations = velocityIterations;
    step.positionIterations = positionIterations;
    if (dt > 0.0f) {
      step.inv_dt = 1.0f / dt;
    }
    else {
      step.inv_dt = 0.0f;
    }
   
    step.dtRatio = m_inv_dt0 * dt;
   
    step.warmStarting = m_warmStarting;
   
    // Update contacts. This is where some contacts are destroyed.
    m_contactManager.collide();
   
    // Integrate velocities, solve velocity constraints, and integrate positions.
    if (step.dt > 0.0f) {
      solve(step);
    }
   
    // Handle TOI events.
    if (m_continuousPhysics && step.dt > 0.0f) {
      solveTOI();
    }
   
    if (step.dt > 0.0f) {
      m_inv_dt0 = step.inv_dt;
    }
   
    if ((m_flags & CLEAR_FORCES) == CLEAR_FORCES) {
      clearForces();
    }
   
    m_flags &= ~LOCKED;
    // log.debug("ending step");
  }
 
  /**
   * Call this after you are done with time steps to clear the forces. You normally
   * call this after each call to Step, unless you are performing sub-steps. By default,
   * forces will be automatically cleared, so you don't need to call this function.
   *
   * @see setAutoClearForces
   */
  public void clearForces() {
    for (Body body = m_bodyList; body != null; body = body.getNext()) {
      body.m_force.setZero();
      body.m_torque = 0.0f;
    }
  }
 
  private final Color3f color = new Color3f();
  private final Transform xf = new Transform();
  private final Vec2 cA = new Vec2();
  private final Vec2 cB = new Vec2();
  private final static Vec2Array avs = new Vec2Array();
 
  /**
   * Call this to draw shapes and other debug draw data.
   */
  public void drawDebugData() {
    if (m_debugDraw == null) {
      return;
    }
   
    int flags = m_debugDraw.getFlags();
   
    if ((flags & DebugDraw.e_shapeBit) == DebugDraw.e_shapeBit) {
      for (Body b = m_bodyList; b != null; b = b.getNext()) {
        xf.set(b.getTransform());
        for (Fixture f = b.getFixtureList(); f != null; f = f.getNext()) {
          if (b.isActive() == false) {
            drawShape(f, xf, new Color3f(0.5f, 0.5f, 0.3f));
          }
          else if (b.getType() == BodyType.STATIC) {
            drawShape(f, xf, new Color3f(0.5f, 0.9f, 0.5f));
          }
          else if (b.getType() == BodyType.KINEMATIC) {
            drawShape(f, xf, new Color3f(0.5f, 0.5f, 0.9f));
          }
          else if (b.isAwake() == false) {
            drawShape(f, xf, new Color3f(0.6f, 0.6f, 0.6f));
          }
          else {
            drawShape(f, xf, new Color3f(0.9f, 0.7f, 0.7f));
          }
        }
      }
    }
   
    if ((flags & DebugDraw.e_jointBit) == DebugDraw.e_jointBit) {
      for (Joint j = m_jointList; j != null; j = j.getNext()) {
        drawJoint(j);
      }
    }
   
    if ((flags & DebugDraw.e_pairBit) == DebugDraw.e_pairBit) {
      color.set(0.3f, 0.9f, 0.9f);
      for (Contact c = m_contactManager.m_contactList; c != null; c = c.getNext()) {
        Fixture fixtureA = c.getFixtureA();
        Fixture fixtureB = c.getFixtureB();
       
        fixtureA.getAABB().getCenterToOut(cA);
        fixtureB.getAABB().getCenterToOut(cB);
       
        m_debugDraw.drawSegment(cA, cB, color);
      }
    }
   
    if ((flags & DebugDraw.e_aabbBit) == DebugDraw.e_aabbBit) {
      color.set(0.9f, 0.3f, 0.9f);
     
      for (Body b = m_bodyList; b != null; b = b.getNext()) {
        if (b.isActive() == false) {
          continue;
        }
       
        for (Fixture f = b.getFixtureList(); f != null; f = f.getNext()) {
          AABB aabb = f.m_proxy.aabb;
          Vec2[] vs = avs.get(4);
          vs[0].set(aabb.lowerBound.x, aabb.lowerBound.y);
          vs[1].set(aabb.upperBound.x, aabb.lowerBound.y);
          vs[2].set(aabb.upperBound.x, aabb.upperBound.y);
          vs[3].set(aabb.lowerBound.x, aabb.upperBound.y);
         
          m_debugDraw.drawPolygon(vs, 4, color);
          if ((b.m_flags & Body.e_toiFlag) == Body.e_toiFlag) {
            // log.debug("toi is on");
            Vec2 v = b.getWorldCenter();
            m_debugDraw.drawPoint(v, 5, color);
            // m_debugDraw.drawString(v.x, v.y, "toi is on", color);
          }
        }
      }
    }
   
    if ((flags & DebugDraw.e_centerOfMassBit) == DebugDraw.e_centerOfMassBit) {
      for (Body b = m_bodyList; b != null; b = b.getNext()) {
        xf.set(b.getTransform());
        xf.position.set(b.getWorldCenter());
        m_debugDraw.drawTransform(xf);
      }
    }
   
    if ((flags & DebugDraw.e_dynamicTreeBit) == DebugDraw.e_dynamicTreeBit) {
      m_contactManager.m_broadPhase.drawTree(m_debugDraw);
    }
  }
 
  private final WorldQueryWrapper wqwrapper = new WorldQueryWrapper();
 
  /**
   * Query the world for all fixtures that potentially overlap the
   * provided AABB.
   *
   * @param callback
   *            a user implemented callback class.
   * @param aabb
   *            the query box.
   */
  public void queryAABB(QueryCallback callback, AABB aabb) {
    wqwrapper.broadPhase = m_contactManager.m_broadPhase;
    wqwrapper.callback = callback;
    m_contactManager.m_broadPhase.query(wqwrapper, aabb);
  }
 
  private final WorldRayCastWrapper wrcwrapper = new WorldRayCastWrapper();
  private final RayCastInput input = new RayCastInput();
 
  /**
   * Ray-cast the world for all fixtures in the path of the ray. Your callback
   * controls whether you get the closest point, any point, or n-points.
   * The ray-cast ignores shapes that contain the starting point.
   *
   * @param callback
   *            a user implemented callback class.
   * @param point1
   *            the ray starting point
   * @param point2
   *            the ray ending point
   */
  public void raycast(RayCastCallback callback, Vec2 point1, Vec2 point2) {
    wrcwrapper.broadPhase = m_contactManager.m_broadPhase;
    wrcwrapper.callback = callback;
    input.maxFraction = 1.0f;
    input.p1.set(point1);
    input.p2.set(point2);
    m_contactManager.m_broadPhase.raycast(wrcwrapper, input);
  }
 
  /**
   * Get the world body list. With the returned body, use Body.getNext to get
   * the next body in the world list. A null body indicates the end of the list.
   *
   * @return the head of the world body list.
   */
  public Body getBodyList() {
    return m_bodyList;
  }
 
  /**
   * Get the world joint list. With the returned joint, use Joint.getNext to get
   * the next joint in the world list. A null joint indicates the end of the list.
   *
   * @return the head of the world joint list.
   */
  public Joint getJointList() {
    return m_jointList;
  }
 
  /**
   * Get the world contact list. With the returned contact, use Contact.getNext to get
   * the next contact in the world list. A null contact indicates the end of the list.
   *
   * @return the head of the world contact list.
   * @warning contacts are
   */
  public Contact getContactList() {
    return m_contactManager.m_contactList;
  }
 
  /**
   * Enable/disable warm starting. For testing.
   *
   * @param flag
   */
  public void setWarmStarting(boolean flag) {
    m_warmStarting = flag;
  }
 
  /**
   * Enable/disable continuous physics. For testing.
   *
   * @param flag
   */
  public void setContinuousPhysics(boolean flag) {
    m_continuousPhysics = flag;
  }
 
  /**
   * Get the number of broad-phase proxies.
   *
   * @return
   */
  public int getProxyCount() {
    return m_contactManager.m_broadPhase.getProxyCount();
  }
 
  /**
   * Get the number of bodies.
   *
   * @return
   */
  public int getBodyCount() {
    return m_bodyCount;
  }
 
  /**
   * Get the number of joints.
   *
   * @return
   */
  public int getJointCount() {
    return m_jointCount;
  }
 
  /**
   * Get the number of contacts (each may have 0 or more contact points).
   *
   * @return
   */
  public int getContactCount() {
    return m_contactManager.m_contactCount;
  }
 
  /**
   * Change the global gravity vector.
   *
   * @param gravity
   */
  public void setGravity(Vec2 gravity) {
    m_gravity.set(gravity);
  }
 
  /**
   * Get the global gravity vector.
   *
   * @return
   */
  public Vec2 getGravity() {
    return m_gravity;
  }
 
  /**
   * Is the world locked (in the middle of a time step).
   *
   * @return
   */
  public boolean isLocked() {
    return (m_flags & LOCKED) == LOCKED;
  }
 
  /**
   * Set flag to control automatic clearing of forces after each time step.
   *
   * @param flag
   */
  public void setAutoClearForces(boolean flag) {
    if (flag) {
      m_flags |= CLEAR_FORCES;
    }
    else {
      m_flags &= ~CLEAR_FORCES;
    }
  }
 
  /**
   * Get the flag that controls automatic clearing of forces after each time step.
   *
   * @return
   */
  public boolean getAutoClearForces() {
    return (m_flags & CLEAR_FORCES) == CLEAR_FORCES;
  }
 
  private final Island island = new Island();
  private Body[] stack = new Body[10]; // TODO djm find a good initial stack number;
 
  private void solve(TimeStep step) {
    // Size the island for the worst case.
    island.init(m_bodyCount, m_contactManager.m_contactCount, m_jointCount, m_contactManager.m_contactListener);
   
    // Clear all the island flags.
    for (Body b = m_bodyList; b != null; b = b.m_next) {
      b.m_flags &= ~Body.e_islandFlag;
    }
    for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) {
      c.m_flags &= ~Contact.ISLAND_FLAG;
    }
    for (Joint j = m_jointList; j != null; j = j.m_next) {
      j.m_islandFlag = false;
    }
   
    // Build and simulate all awake islands.
    int stackSize = m_bodyCount;
    if (stack.length < stackSize) {
      stack = new Body[stackSize];
    }
    for (Body seed = m_bodyList; seed != null; seed = seed.m_next) {
      if ((seed.m_flags & Body.e_islandFlag) == Body.e_islandFlag) {
        continue;
      }
     
      if (seed.isAwake() == false || seed.isActive() == false) {
        continue;
      }
     
      // The seed can be dynamic or kinematic.
      if (seed.getType() == BodyType.STATIC) {
        continue;
      }
     
      // Reset island and stack.
      island.clear();
      int stackCount = 0;
      stack[stackCount++] = seed;
      seed.m_flags |= Body.e_islandFlag;
     
      // Perform a depth first search (DFS) on the constraint graph.
      while (stackCount > 0) {
        // Grab the next body off the stack and add it to the island.
        Body b = stack[--stackCount];
        assert (b.isActive() == true);
        island.add(b);
       
        // Make sure the body is awake.
        b.setAwake(true);
       
        // To keep islands as small as possible, we don't
        // propagate islands across static bodies.
        if (b.getType() == BodyType.STATIC) {
          continue;
        }
       
        // Search all contacts connected to this body.
        for (ContactEdge ce = b.m_contactList; ce != null; ce = ce.next) {
          Contact contact = ce.contact;
         
          // Has this contact already been added to an island?
          if ((contact.m_flags & Contact.ISLAND_FLAG) == Contact.ISLAND_FLAG) {
            continue;
          }
         
          // Is this contact solid and touching?
          if (contact.isEnabled() == false || contact.isTouching() == false) {
            continue;
          }
         
          // Skip sensors.
          boolean sensorA = contact.m_fixtureA.m_isSensor;
          boolean sensorB = contact.m_fixtureB.m_isSensor;
          if (sensorA || sensorB) {
            continue;
          }
         
          island.add(contact);
          contact.m_flags |= Contact.ISLAND_FLAG;
         
          Body other = ce.other;
         
          // Was the other body already added to this island?
          if ((other.m_flags & Body.e_islandFlag) == Body.e_islandFlag) {
            continue;
          }
         
          assert (stackCount < stackSize);
          stack[stackCount++] = other;
          other.m_flags |= Body.e_islandFlag;
        }
       
        // Search all joints connect to this body.
        for (JointEdge je = b.m_jointList; je != null; je = je.next) {
          if (je.joint.m_islandFlag == true) {
            continue;
          }
         
          Body other = je.other;
         
          // Don't simulate joints connected to inactive bodies.
          if (other.isActive() == false) {
            continue;
          }
         
          island.add(je.joint);
          je.joint.m_islandFlag = true;
         
          if ((other.m_flags & Body.e_islandFlag) == Body.e_islandFlag) {
            continue;
          }
         
          assert (stackCount < stackSize);
          stack[stackCount++] = other;
          other.m_flags |= Body.e_islandFlag;
        }
      }
     
      island.solve(step, m_gravity, m_allowSleep);
     
      // Post solve cleanup.
      for (int i = 0; i < island.m_bodyCount; ++i) {
        // Allow static bodies to participate in other islands.
        Body b = island.m_bodies[i];
        if (b.getType() == BodyType.STATIC) {
          b.m_flags &= ~Body.e_islandFlag;
        }
      }
    }
   
    // Synchronize fixtures, check for out of range bodies.
    for (Body b = m_bodyList; b != null; b = b.getNext()) {
      // If a body was not in an island then it did not move.
      if ((b.m_flags & Body.e_islandFlag) == 0) {
        continue;
      }
     
      if (b.getType() == BodyType.STATIC) {
        continue;
      }
     
      // Update fixtures (for broad-phase).
      b.synchronizeFixtures();
    }
   
    // Look for new contacts.
    m_contactManager.findNewContacts();
  }
 
  private void solveTOI() {
    // Prepare all contacts.
    for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) {
      // Enable the contact
      c.m_flags |= Contact.ENABLED_FLAG;
     
      // Set the number of TOI events for this contact to zero.
      c.m_toiCount = 0;
    }
   
    // Initialize the TOI flag.
    for (Body body = m_bodyList; body != null; body = body.m_next) {
      // Kinematic, and static bodies will not be affected by the TOI event.
      // If a body was not in an island then it did not move.
      if ((body.m_flags & Body.e_islandFlag) == 0 || body.getType() == BodyType.KINEMATIC
          || body.getType() == BodyType.STATIC) {
        body.m_flags |= Body.e_toiFlag;
      }
      else {
        body.m_flags &= ~Body.e_toiFlag;
      }
    }
   
    // Collide non-bullets.
    for (Body body = m_bodyList; body != null; body = body.m_next) {
      if ((body.m_flags & Body.e_toiFlag) == Body.e_toiFlag) {
        continue;
      }
     
      if (body.isBullet() == true) {
        continue;
      }
     
      solveTOI(body);
     
      body.m_flags |= Body.e_toiFlag;
    }
   
    // Collide bullets.
    for (Body body = m_bodyList; body != null; body = body.m_next) {
      if ((body.m_flags & Body.e_toiFlag) == Body.e_toiFlag) {
        continue;
      }
     
      if (body.isBullet() == false) {
        continue;
      }
     
      solveTOI(body);
     
      body.m_flags |= Body.e_toiFlag;
    }
  }
 
  private final TOIInput toiInput = new TOIInput();
  private final TOIOutput toiOutput = new TOIOutput();
  private final Sweep backup = new Sweep();
  private final TOISolver toiSolver = new TOISolver();
 

  private Contact[] m_contacts = new Contact[Settings.maxTOIContacts];
 
  private void solveTOI(Body body) {
    // Find the minimum contact.
    Contact toiContact = null;
    float toi = 1.0f;
    Body toiOther = null;
    boolean found;
    int count;
    int iter = 0;
   
    boolean bullet = body.isBullet();
   
    // Iterate until all contacts agree on the minimum TOI. We have
    // to iterate because the TOI algorithm may skip some intermediate
    // collisions when objects rotate through each other.
    do {
      count = 0;
      found = false;
      for (ContactEdge ce = body.m_contactList; ce != null; ce = ce.next) {
        if (ce.contact == toiContact) {
          continue;
        }
       
        Body other = ce.other;
        BodyType type = other.getType();
       
        // Only bullets perform TOI with dynamic bodies.
        if (bullet == true) {
          // Bullets only perform TOI with bodies that have their TOI resolved.
          if ((other.m_flags & Body.e_toiFlag) == 0) {
            continue;
          }
         
          // No repeated hits on non-static bodies
          if (type != BodyType.STATIC && (ce.contact.m_flags & Contact.BULLET_HIT_FLAG) != 0) {
            continue;
          }
        }
        else if (type == BodyType.DYNAMIC) {
          continue;
        }
       
        // Check for a disabled contact.
        Contact contact = ce.contact;
        if (contact.isEnabled() == false) {
          continue;
        }
       
        // Prevent infinite looping.
        if (contact.m_toiCount > 10) {
          continue;
        }
       
        Fixture fixtureA = contact.m_fixtureA;
        Fixture fixtureB = contact.m_fixtureB;
       
        // Cull sensors.
        if (fixtureA.isSensor() || fixtureB.isSensor()) {
          continue;
        }
       
        Body bodyA = fixtureA.m_body;
        Body bodyB = fixtureB.m_body;
       
        // Compute the time of impact in interval [0, minTOI]
        toiInput.proxyA.set(fixtureA.getShape());
        toiInput.proxyB.set(fixtureB.getShape());
        toiInput.sweepA.set(bodyA.m_sweep);
        toiInput.sweepB.set(bodyB.m_sweep);
        toiInput.tMax = toi;
       
        pool.getTimeOfImpact().timeOfImpact(toiOutput, toiInput);
       
        if (toiOutput.state == TOIOutputState.TOUCHING && toiOutput.t < toi) {
          toiContact = contact;
          toi = toiOutput.t;
          toiOther = other;
          found = true;
        }
       
        ++count;
      }
     
      ++iter;
    }
    while (found && count > 1 && iter < 50);
   
    if (toiContact == null) {
      body.advance(1.0f);
      return;
    }
   
    backup.set(body.m_sweep);
    body.advance(toi);
    toiContact.update(m_contactManager.m_contactListener);
    if (toiContact.isEnabled() == false) {
      // Contact disabled. Backup and recurse.
      body.m_sweep.set(backup);
      solveTOI(body);
    }
   
    ++toiContact.m_toiCount;
   
    // Update all the valid contacts on this body and build a contact island.
    if (m_contacts == null || m_contacts.length < Settings.maxTOIContacts){
      m_contacts = new Contact[Settings.maxTOIContacts];
    }
   
    count = 0;
    for (ContactEdge ce = body.m_contactList; ce != null && count < Settings.maxTOIContacts; ce = ce.next) {
      Body other = ce.other;
      BodyType type = other.getType();
     
      // Only perform correction with static bodies, so the
      // body won't get pushed out of the world.
      if (type == BodyType.DYNAMIC) {
        continue;
      }
     
      // Check for a disabled contact.
      Contact contact = ce.contact;
      if (contact.isEnabled() == false) {
        continue;
      }
     
      Fixture fixtureA = contact.m_fixtureA;
      Fixture fixtureB = contact.m_fixtureB;
     
      // Cull sensors.
      if (fixtureA.isSensor() || fixtureB.isSensor()) {
        continue;
      }
     
      // The contact likely has some new contact points. The listener
      // gives the user a chance to disable the contact.
      if (contact != toiContact) {
        contact.update(m_contactManager.m_contactListener);
      }
     
      // Did the user disable the contact?
      if (contact.isEnabled() == false) {
        // Skip this contact.
        continue;
      }
     
      if (contact.isTouching() == false) {
        continue;
      }
     
      m_contacts[count] = contact;
      ++count;
    }
   
    // Reduce the TOI body's overlap with the contact island.
    toiSolver.initialize(m_contacts, count, body);
   
    float k_toiBaumgarte = 0.75f;
    // boolean solved = false;
    for (int i = 0; i < 20; ++i) {
      boolean contactsOkay = toiSolver.solve(k_toiBaumgarte);
      if (contactsOkay) {
        // solved = true;
        break;
      }
    }
   
    if (toiOther.getType() != BodyType.STATIC) {
      toiContact.m_flags |= Contact.BULLET_HIT_FLAG;
    }
  }
 
  private void drawJoint(Joint joint) {
    Body bodyA = joint.getBodyA();
    Body bodyB = joint.getBodyB();
    Transform xf1 = bodyA.getTransform();
    Transform xf2 = bodyB.getTransform();
    Vec2 x1 = xf1.position;
    Vec2 x2 = xf2.position;
    Vec2 p1 = pool.popVec2();
    Vec2 p2 = pool.popVec2();
    joint.getAnchorA(p1);
    joint.getAnchorB(p2);
   
    color.set(0.5f, 0.8f, 0.8f);
   
    switch (joint.getType()) {
      // TODO djm write after writing joints
      case DISTANCE :
        m_debugDraw.drawSegment(p1, p2, color);
        break;
     
      case PULLEY : {
        PulleyJoint pulley = (PulleyJoint) joint;
        Vec2 s1 = pulley.getGroundAnchorA();
        Vec2 s2 = pulley.getGroundAnchorB();
        m_debugDraw.drawSegment(s1, p1, color);
        m_debugDraw.drawSegment(s2, p2, color);
        m_debugDraw.drawSegment(s1, s2, color);
      }
        break;
      case CONSTANT_VOLUME :
      case MOUSE :
        // don't draw this
        break;
      default :
        m_debugDraw.drawSegment(x1, p1, color);
        m_debugDraw.drawSegment(p1, p2, color);
        m_debugDraw.drawSegment(x2, p2, color);
    }
    pool.pushVec2(2);
  }
 
  // NOTE this corresponds to the liquid test, so the debugdraw can draw
  // the liquid particles correctly.  They should be the same.
  private static Integer LIQUID_INT = new Integer(1234598372);
  private float liquidLength = .12f;
  private float averageLinearVel = -1;
  private final Vec2 liquidOffset = new Vec2();
  private final Vec2 circCenterMoved = new Vec2();
  private final Color3f liquidColor = new Color3f(.4f,.4f,1f);
 
  private final Vec2 center = new Vec2();
  private final Vec2 axis = new Vec2();
  private final Vec2Array tlvertices = new Vec2Array();
 
  private void drawShape(Fixture fixture, Transform xf, Color3f color) {
    switch (fixture.getType()) {
      case CIRCLE : {
        CircleShape circle = (CircleShape) fixture.getShape();
       
        // Vec2 center = Mul(xf, circle.m_p);
        Transform.mulToOut(xf, circle.m_p, center);
        float radius = circle.m_radius;
        axis.x = xf.R.m11;
        axis.y = xf.R.m12;
       
        if (fixture.getUserData() != null && fixture.getUserData().equals(LIQUID_INT)) {
          Body b = fixture.getBody();
          liquidOffset.set(b.m_linearVelocity);
          float linVelLength = b.m_linearVelocity.length();
          if(averageLinearVel == -1){
            averageLinearVel = linVelLength;
          }else{
            averageLinearVel = .98f * averageLinearVel + .02f * linVelLength;
          }
          liquidOffset.mulLocal( liquidLength/averageLinearVel/2);
          circCenterMoved.set(center).addLocal( liquidOffset);
          center.subLocal(liquidOffset);
          m_debugDraw.drawSegment(center, circCenterMoved, liquidColor);
          return;
        }
       
        m_debugDraw.drawSolidCircle(center, radius, axis, color);
      }
        break;
     
      case POLYGON : {
        PolygonShape poly = (PolygonShape) fixture.getShape();
        int vertexCount = poly.m_vertexCount;
        assert (vertexCount <= Settings.maxPolygonVertices);
        Vec2[] vertices = tlvertices.get(Settings.maxPolygonVertices);
       
        for (int i = 0; i < vertexCount; ++i) {
          // vertices[i] = Mul(xf, poly.m_vertices[i]);
          Transform.mulToOut(xf, poly.m_vertices[i], vertices[i]);
        }
       
        m_debugDraw.drawSolidPolygon(vertices, vertexCount, color);
      }
        break;
    }
  }
}

class WorldQueryWrapper implements TreeCallback {
  public boolean treeCallback(DynamicTreeNode node) {
    Fixture fixture = (Fixture) node.userData;
    return callback.reportFixture(fixture);
  }
 
  BroadPhase broadPhase;
  QueryCallback callback;
}

class WorldRayCastWrapper implements TreeRayCastCallback {
 
  // djm pooling
  private final RayCastOutput output = new RayCastOutput();
  private final Vec2 temp = new Vec2();
  private final Vec2 point = new Vec2();
 
  public float raycastCallback(RayCastInput input, DynamicTreeNode node) {
    Object userData = node.userData;
    Fixture fixture = (Fixture) userData;
    boolean hit = fixture.raycast(output, input);
   
    if (hit) {
      float fraction = output.fraction;
      // Vec2 point = (1.0f - fraction) * input.p1 + fraction * input.p2;
      temp.set(input.p2).mulLocal(fraction);
      point.set(input.p1).mulLocal(1 - fraction).addLocal(temp);
      return callback.reportFixture(fixture, point, output.normal, fraction);
    }
   
    return input.maxFraction;
  }
 
  BroadPhase broadPhase;
  RayCastCallback callback;
}
TOP

Related Classes of org.jbox2d.dynamics.WorldQueryWrapper

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.
div>