/* This code is part of Freenet. It is distributed under the GNU General
* Public License, version 2 (or at your option any later version). See
* http://www.gnu.org/ for further details of the GPL. */
package freenet.crypt;
import java.math.BigInteger;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import net.i2p.util.NativeBigInteger;
import freenet.support.HexUtil;
/**
* DSA Group Generator.
* Adapted from FIPS 186-2.
* Can generate valid groups of any keysize and any hash length.
*/
public class DSAGroupGenerator {
static BigInteger smallPrimes[] = new BigInteger[] { BigInteger.valueOf(3),
BigInteger.valueOf(5), BigInteger.valueOf(7),
BigInteger.valueOf(11), BigInteger.valueOf(13),
BigInteger.valueOf(17), BigInteger.valueOf(19),
BigInteger.valueOf(23), BigInteger.valueOf(29)};
public static void main(String[] args) throws NoSuchAlgorithmException {
Yarrow r = new Yarrow();
int keyLength = Integer.parseInt(args[0]);
int hashLength = Integer.parseInt(args[1]);
System.out.println("Key length: "+keyLength);
System.out.println("Hash length: "+hashLength);
if(hashLength > keyLength)
throw new IllegalArgumentException("hashLength must not be greater than keyLength");
MessageDigest md;
if(hashLength == 256) {
md = SHA256.getMessageDigest();
} else if(hashLength == 160) {
md = MessageDigest.getInstance("SHA-160");
} else {
throw new IllegalArgumentException("Invalid hash length "+hashLength);
}
if(keyLength % 64 != 0)
throw new IllegalArgumentException("Key length must be divisible by 64");
if(keyLength % hashLength != 0)
throw new IllegalArgumentException("Key length must be divisible by hash length (short cut taken here)");
while(!generate(r, keyLength, hashLength, md));
if(hashLength == 256)
SHA256.returnMessageDigest(md);
}
private static boolean generate(RandomSource r, int keyLength, int hashLength, MessageDigest md) {
int n = keyLength / hashLength;
// 1: SEED = arbitrary sequence of at least hashLength bits
// g = length of SEED in bits
int g = hashLength * 2;
byte[] seed = new byte[g/8];
r.nextBytes(seed);
// 2: U = SHA-256(SEED) XOR SHA-256(SEED+1 mod 2^g)
byte[] seedPlus1 = increment(seed);
byte[] seedHash = md.digest(seed);
byte[] seedPlus1Hash = md.digest(seedPlus1);
byte[] U = new byte[hashLength/8];
for(int i=0;i<U.length;i++)
U[i] = (byte) (seedHash[i] ^ seedPlus1Hash[i]);
// 3: Set LSB and MSB on U to 1, q = U
byte[] qBuf = new byte[hashLength/8];
System.arraycopy(U, 0, qBuf, 0, hashLength/8);
qBuf[0] = (byte) (qBuf[0] | 128);
qBuf[qBuf.length-1] = (byte) (qBuf[qBuf.length-1] | 1);
BigInteger q = new BigInteger(1, qBuf);
// 4: Check that q is prime, and 2q+1 is prime
// 5: If not, restart from step 1
System.out.println("Maybe got prime: "+q.toString(16)+ " ("+q.bitLength()+ ')');
if(!isPrime(q))
return false;
System.out.println("Got prime q");
BigInteger sophieGermainCheck = q.add(q).add(BigInteger.ONE);
if(!isPrime(sophieGermainCheck))
return false;
System.out.println("Got SG-prime q");
// 6: Let counter = 0 and offset = 2
int counter = 0;
byte[] curSeed = seedPlus1;
while(true) {
// 7: For k = 0...n let V_k = SHA-256((SEED+offset+k) mod 2^g)
byte[][] V = new byte[n][];
for(int i=0;i<n;i++) {
curSeed = increment(curSeed);
V[i] = md.digest(curSeed);
}
// 8: Pack all the V's into W bit-wise, set the top bit so is between 2^(L-1) and 2^L
byte[] Wbuf = new byte[keyLength/8];
for(int i=0;i<keyLength;i+=hashLength) {
System.arraycopy(V[i/hashLength], 0, Wbuf, i/8, hashLength/8);
}
Wbuf[0] = (byte) (Wbuf[0] | 128);
BigInteger X = new NativeBigInteger(1, Wbuf);
// 9: Let c = X mod 2q. Set p = X - ( c - 1 ). Therefore p mod 2q = 1.
BigInteger c = X.mod(q.add(q));
BigInteger p = X.subtract(c.subtract(BigInteger.ONE));
if(p.bitLength() >= keyLength-1) {
if(isPrime(p)) {
finish(r, hashLength, new NativeBigInteger(p), new NativeBigInteger(q), seed, counter);
return true;
}
}
counter++;
if(counter >= 4096) return false;
}
}
private static void finish(RandomSource r, int hashLength, NativeBigInteger p, NativeBigInteger q, byte[] seed, int counter) {
System.out.println("SEED: "+HexUtil.bytesToHex(seed));
System.out.println("COUNTER: "+counter);
System.out.println("p: "+p.toString(16)+" ("+p.bitLength()+ ')');
System.out.println("q: "+q.toString(16)+" ("+q.bitLength()+ ')');
// Now generate g (algorithm from appendix 4 of FIPS 186-2)
NativeBigInteger g;
do {
BigInteger e = p.subtract(BigInteger.ONE).divide(q);
NativeBigInteger h;
do {
h = new NativeBigInteger(hashLength, r);
} while(h.compareTo(p.subtract(BigInteger.ONE)) >= 0);
g = (NativeBigInteger) h.modPow(e, p);
} while (g.equals(BigInteger.ONE));
DSAGroup group = new DSAGroup(p, q, g);
System.out.println("g: "+HexUtil.toHexString(g)+" ("+g.bitLength()+ ')');
System.out.println("Group: "+group.verboseToString());
long totalSigTime = 0;
long totalVerifyTime = 0;
for(int i=0;i<10000;i++) {
byte[] testHash = new byte[hashLength/8];
r.nextBytes(testHash);
NativeBigInteger m = new NativeBigInteger(1, testHash);
DSAPrivateKey privKey = new DSAPrivateKey(group, r);
DSAPublicKey pubKey = new DSAPublicKey(group, privKey);
long now = System.currentTimeMillis();
DSASignature sig = DSA.sign(group, privKey, m, r);
long middle = System.currentTimeMillis();
boolean success = DSA.verify(pubKey, sig, m, false);
long end = System.currentTimeMillis();
if(success) {
totalSigTime += (middle - now);
totalVerifyTime += (end - middle);
} else {
System.out.println("SIGNATURE VERIFICATION FAILED!!!");
System.exit(1);
}
}
System.out.println("Successfully signed and verified 10,000 times, average sig time "+totalSigTime / 10000.0 +", average verify time "+totalVerifyTime/10000.0);
}
private static byte[] increment(byte[] seed) {
byte[] obuf = new byte[seed.length];
System.arraycopy(seed, 0, obuf, 0, seed.length);
int pos = seed.length-1;
while(pos >= 0) {
byte b = (byte) (obuf[pos] + 1);
obuf[pos] = b;
if(b != 0) return obuf;
pos--;
}
return obuf;
}
public static boolean isPrime(BigInteger b) {
if(BigInteger.ONE.compareTo(b) > -1)
throw new IllegalArgumentException("Can't be a prime number!");
for(int i = 0; i < smallPrimes.length; i++) {
if(b.mod(smallPrimes[i]).equals(BigInteger.ZERO))
return false;
}
// FIPS 186-2 recommends 2^100:1 confidence
return b.isProbablePrime(200);
}
}