Package

Source Code of p100

/*
* Solution to Project Euler problem 100
* By Nayuki Minase
*
* http://nayuki.eigenstate.org/page/project-euler-solutions
* https://github.com/nayuki/Project-Euler-solutions
*/

import java.math.BigInteger;


public final class p100 implements EulerSolution {
 
  public static void main(String[] args) {
    System.out.println(new p100().run());
  }
 
 
  /*
   * Suppose the box has b blue discs and r red discs.
   * The probability of taking 2 blue discs is [b / (b + r)] * [(b - 1) / (b + r - 1)],
   * which we want to be equal to 1/2. Rearrange the equation:
   *   [b(b - 1)] / [(b + r)(b + r - 1)] = 1 / 2.
   *   2b(b - 1) = (b + r)(b + r - 1).
   *   2b^2 - 2b = b^2 + br - b + br + r^2 - r.
   *   b^2 - b = r^2 + 2br - r.
   *   b^2 - (2r + 1)b + (r - r^2) = 0.
   * Apply the quadratic equation to solve for b:
   *   b = [(2r + 1) +/- sqrt((2r + 1)^2 - 4(r - r^2))] / 2
   *     = r + [1 +/- sqrt(8r^2 + 1)]/2
   *     = r + [sqrt(8r^2 + 1) + 1]/2.  (Discard the minus solution because it would make b < r)
   *
   * For b to be an integer, we need sqrt(8r^2 + 1) to be odd, and also 8r^2 + 1 be a perfect square.
   * Assume 8y^2 + 1 = x^2 for some integer x > 0.
   * We can see this is in fact a Pell's equation: x^2 - 8y^2 = 1.
   *
   * Suppose we have the solution (x0, y0) such that x0 > 0 and x0 is as small as possible.
   * This is called the fundamental solution, and all other solutions be derived from it (proven elsewhere).
   * Suppose (x0, y0) and (x1, y1) are solutions. Then we have:
   *   x0^2 - 8*y0^2 = 1.
   *   (x0 + y0*sqrt(8))(x0 - y0*sqrt(8)) = 1.
   *   (x1 + y1*sqrt(8))(x1 - y1*sqrt(8)) = 1.  (Similarly)
   * Multiply them together:
   *   [(x0 + y0*sqrt(8))(x0 - y0*sqrt(8))][(x1 + y1*sqrt(8))(x1 - y1*sqrt(8))] = 1 * 1.
   *   [(x0 + y0*sqrt(8))(x1 + y1*sqrt(8))][(x0 - y0*sqrt(8))(x1 - y1*sqrt(8))] = 1.
   *   [x0*x1 + x0*y1*sqrt(8) + x1*y0*sqrt(8) + 8y0*y1][x0*x1 - x0*y1*sqrt(8) - x1*y0*sqrt(8) + 8y0*y1] = 1.
   *   [(x0*x1 + 8y0*y1) + (x0*y1 + x1*y0)*sqrt(8)][(x0*x1 + 8y0*y1) - (x0*y1 + x1*y0)*sqrt(8)] = 1.
   *   (x0*x1 + 8y0*y1)^2 - 8*(x0*y1 + x1*y0)^2 = 1.
   * Therefore (x0*x1 + 8y0*y1, x0*y1 + x1*y0) is also a solution.
   * By inspection, the fundamental solution is (3, 1).
   */
  public String run() {
    // Fundamental solution
    BigInteger x0 = BigInteger.valueOf(3);
    BigInteger y0 = BigInteger.valueOf(1);
   
    // Current solution
    BigInteger x = BigInteger.valueOf(3);
    BigInteger y = BigInteger.valueOf(1)// An alias for the number of red discs
    while (true) {
      // Check if this solution is acceptable
      BigInteger sqrt = sqrt(y.multiply(y).multiply(BigInteger.valueOf(8)).add(BigInteger.ONE));
      if (sqrt.testBit(0)) {  // Is odd
        BigInteger blue = sqrt.add(BigInteger.ONE).divide(BigInteger.valueOf(2)).add(y);
        if (blue.add(y).compareTo(BigInteger.TEN.pow(12)) > 0)
          return blue.toString();
      }
     
      // Create the next bigger solution
      BigInteger nextx = x.multiply(x0).add(y.multiply(y0).multiply(BigInteger.valueOf(8)));
      BigInteger nexty = x.multiply(y0).add(y.multiply(x0));
      x = nextx;
      y = nexty;
    }
  }
 
 
  private static BigInteger sqrt(BigInteger x) {
    BigInteger y = BigInteger.ZERO;
    for (int i = (x.bitLength() - 1) / 2; i >= 0; i--) {
      y = y.setBit(i);
      if (y.multiply(y).compareTo(x) > 0)
        y = y.clearBit(i);
    }
    return y;
  }
 
}
TOP

Related Classes of p100

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.