/* Copyright (C) 2005 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org. For further
information, see the file `LICENSE' included with this distribution. */
package cc.mallet.topics.tui;
import cc.mallet.util.CommandOption;
import cc.mallet.util.Randoms;
import cc.mallet.types.InstanceList;
import cc.mallet.types.FeatureSequence;
import cc.mallet.topics.*;
import cc.mallet.pipe.iterator.DBInstanceIterator;
import java.io.*;
/** Perform topic analysis in the style of LDA and its variants.
* @author <a href="mailto:mccallum@cs.umass.edu">Andrew McCallum</a>
*/
public class Vectors2Topics {
static CommandOption.String inputFile = new CommandOption.String
(Vectors2Topics.class, "input", "FILENAME", true, null,
"The filename from which to read the list of training instances. Use - for stdin. " +
"The instances must be FeatureSequence or FeatureSequenceWithBigrams, not FeatureVector", null);
static CommandOption.SpacedStrings languageInputFiles = new CommandOption.SpacedStrings
(Vectors2Topics.class, "language-inputs", "FILENAME [FILENAME ...]", true, null,
"Filenames for polylingual topic model. Each language should have its own file, " +
"with the same number of instances in each file. If a document is missing in " +
"one language, there should be an empty instance.", null);
static CommandOption.String testingFile = new CommandOption.String
(Vectors2Topics.class, "testing", "FILENAME", false, null,
"The filename from which to read the list of instances for empirical likelihood calculation. Use - for stdin. " +
"The instances must be FeatureSequence or FeatureSequenceWithBigrams, not FeatureVector", null);
static CommandOption.String outputModelFilename = new CommandOption.String
(Vectors2Topics.class, "output-model", "FILENAME", true, null,
"The filename in which to write the binary topic model at the end of the iterations. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String inputModelFilename = new CommandOption.String
(Vectors2Topics.class, "input-model", "FILENAME", true, null,
"The filename from which to read the binary topic model to which the --input will be appended, " +
"allowing incremental training. " +
"By default this is null, indicating that no file will be read.", null);
static CommandOption.String inferencerFilename = new CommandOption.String
(Vectors2Topics.class, "inferencer-filename", "FILENAME", true, null,
"A topic inferencer applies a previously trained topic model to new documents. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String evaluatorFilename = new CommandOption.String
(Vectors2Topics.class, "evaluator-filename", "FILENAME", true, null,
"A held-out likelihood evaluator for new documents. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String stateFile = new CommandOption.String
(Vectors2Topics.class, "output-state", "FILENAME", true, null,
"The filename in which to write the Gibbs sampling state after at the end of the iterations. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String topicKeysFile = new CommandOption.String
(Vectors2Topics.class, "output-topic-keys", "FILENAME", true, null,
"The filename in which to write the top words for each topic and any Dirichlet parameters. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String topicWordWeightsFile = new CommandOption.String
(Vectors2Topics.class, "topic-word-weights-file", "FILENAME", true, null,
"The filename in which to write unnormalized weights for every topic and word type. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String wordTopicCountsFile = new CommandOption.String
(Vectors2Topics.class, "word-topic-counts-file", "FILENAME", true, null,
"The filename in which to write a sparse representation of topic-word assignments. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String topicReportXMLFile = new CommandOption.String
(Vectors2Topics.class, "xml-topic-report", "FILENAME", true, null,
"The filename in which to write the top words for each topic and any Dirichlet parameters in XML format. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String topicPhraseReportXMLFile = new CommandOption.String
(Vectors2Topics.class, "xml-topic-phrase-report", "FILENAME", true, null,
"The filename in which to write the top words and phrases for each topic and any Dirichlet parameters in XML format. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.String docTopicsFile = new CommandOption.String
(Vectors2Topics.class, "output-doc-topics", "FILENAME", true, null,
"The filename in which to write the topic proportions per document, at the end of the iterations. " +
"By default this is null, indicating that no file will be written.", null);
static CommandOption.Double docTopicsThreshold = new CommandOption.Double
(Vectors2Topics.class, "doc-topics-threshold", "DECIMAL", true, 0.0,
"When writing topic proportions per document with --output-doc-topics, " +
"do not print topics with proportions less than this threshold value.", null);
static CommandOption.Integer docTopicsMax = new CommandOption.Integer
(Vectors2Topics.class, "doc-topics-max", "INTEGER", true, -1,
"When writing topic proportions per document with --output-doc-topics, " +
"do not print more than INTEGER number of topics. "+
"A negative value indicates that all topics should be printed.", null);
static CommandOption.Integer numTopics = new CommandOption.Integer
(Vectors2Topics.class, "num-topics", "INTEGER", true, 10,
"The number of topics to fit.", null);
static CommandOption.Integer numThreads = new CommandOption.Integer
(Vectors2Topics.class, "num-threads", "INTEGER", true, 1,
"The number of threads for parallel training.", null);
static CommandOption.Integer numIterations = new CommandOption.Integer
(Vectors2Topics.class, "num-iterations", "INTEGER", true, 1000,
"The number of iterations of Gibbs sampling.", null);
static CommandOption.Integer randomSeed = new CommandOption.Integer
(Vectors2Topics.class, "random-seed", "INTEGER", true, 0,
"The random seed for the Gibbs sampler. Default is 0, which will use the clock.", null);
static CommandOption.Integer topWords = new CommandOption.Integer
(Vectors2Topics.class, "num-top-words", "INTEGER", true, 20,
"The number of most probable words to print for each topic after model estimation.", null);
static CommandOption.Integer showTopicsInterval = new CommandOption.Integer
(Vectors2Topics.class, "show-topics-interval", "INTEGER", true, 50,
"The number of iterations between printing a brief summary of the topics so far.", null);
static CommandOption.Integer outputModelInterval = new CommandOption.Integer
(Vectors2Topics.class, "output-model-interval", "INTEGER", true, 0,
"The number of iterations between writing the model (and its Gibbs sampling state) to a binary file. " +
"You must also set the --output-model to use this option, whose argument will be the prefix of the filenames.", null);
static CommandOption.Integer outputStateInterval = new CommandOption.Integer
(Vectors2Topics.class, "output-state-interval", "INTEGER", true, 0,
"The number of iterations between writing the sampling state to a text file. " +
"You must also set the --output-state to use this option, whose argument will be the prefix of the filenames.", null);
static CommandOption.Integer optimizeInterval = new CommandOption.Integer
(Vectors2Topics.class, "optimize-interval", "INTEGER", true, 0,
"The number of iterations between reestimating dirichlet hyperparameters.", null);
static CommandOption.Integer optimizeBurnIn = new CommandOption.Integer
(Vectors2Topics.class, "optimize-burn-in", "INTEGER", true, 200,
"The number of iterations to run before first estimating dirichlet hyperparameters.", null);
static CommandOption.Boolean useSymmetricAlpha = new CommandOption.Boolean
(Vectors2Topics.class, "use-symmetric-alpha", "true|false", false, false,
"Only optimize the concentration parameter of the prior over document-topic distributions. This may reduce the number of very small, poorly estimated topics, but may disperse common words over several topics.", null);
static CommandOption.Boolean useNgrams = new CommandOption.Boolean
(Vectors2Topics.class, "use-ngrams", "true|false", false, false,
"Rather than using LDA, use Topical-N-Grams, which models phrases.", null);
static CommandOption.Boolean usePAM = new CommandOption.Boolean
(Vectors2Topics.class, "use-pam", "true|false", false, false,
"Rather than using LDA, use Pachinko Allocation Model, which models topical correlations." +
"You cannot do this and also --use-ngrams.", null);
static CommandOption.Double alpha = new CommandOption.Double
(Vectors2Topics.class, "alpha", "DECIMAL", true, 50.0,
"Alpha parameter: smoothing over topic distribution.",null);
static CommandOption.Double beta = new CommandOption.Double
(Vectors2Topics.class, "beta", "DECIMAL", true, 0.01,
"Beta parameter: smoothing over unigram distribution.",null);
static CommandOption.Double gamma = new CommandOption.Double
(Vectors2Topics.class, "gamma", "DECIMAL", true, 0.01,
"Gamma parameter: smoothing over bigram distribution",null);
static CommandOption.Double delta = new CommandOption.Double
(Vectors2Topics.class, "delta", "DECIMAL", true, 0.03,
"Delta parameter: smoothing over choice of unigram/bigram",null);
static CommandOption.Double delta1 = new CommandOption.Double
(Vectors2Topics.class, "delta1", "DECIMAL", true, 0.2,
"Topic N-gram smoothing parameter",null);
static CommandOption.Double delta2 = new CommandOption.Double
(Vectors2Topics.class, "delta2", "DECIMAL", true, 1000.0,
"Topic N-gram smoothing parameter",null);
static CommandOption.Integer pamNumSupertopics = new CommandOption.Integer
(Vectors2Topics.class, "pam-num-supertopics", "INTEGER", true, 10,
"When using the Pachinko Allocation Model (PAM) set the number of supertopics. " +
"Typically this is about half the number of subtopics, although more may help.", null);
static CommandOption.Integer pamNumSubtopics = new CommandOption.Integer
(Vectors2Topics.class, "pam-num-subtopics", "INTEGER", true, 20,
"When using the Pachinko Allocation Model (PAM) set the number of subtopics.", null);
public static void main (String[] args) throws java.io.IOException
{
// Process the command-line options
CommandOption.setSummary (Vectors2Topics.class,
"A tool for estimating, saving and printing diagnostics for topic models, such as LDA.");
CommandOption.process (Vectors2Topics.class, args);
if (usePAM.value) {
InstanceList ilist = InstanceList.load (new File(inputFile.value));
System.out.println ("Data loaded.");
if (inputModelFilename.value != null)
throw new IllegalArgumentException ("--input-model not supported with --use-pam.");
PAM4L pam = new PAM4L(pamNumSupertopics.value, pamNumSubtopics.value);
pam.estimate (ilist, numIterations.value, /*optimizeModelInterval*/50,
showTopicsInterval.value,
outputModelInterval.value, outputModelFilename.value,
randomSeed.value == 0 ? new Randoms() : new Randoms(randomSeed.value));
pam.printTopWords(topWords.value, true);
if (stateFile.value != null)
pam.printState (new File(stateFile.value));
if (docTopicsFile.value != null) {
PrintWriter out = new PrintWriter (new FileWriter ((new File(docTopicsFile.value))));
pam.printDocumentTopics (out, docTopicsThreshold.value, docTopicsMax.value);
out.close();
}
if (outputModelFilename.value != null) {
assert (pam != null);
try {
ObjectOutputStream oos = new ObjectOutputStream (new FileOutputStream (outputModelFilename.value));
oos.writeObject (pam);
oos.close();
} catch (Exception e) {
e.printStackTrace();
throw new IllegalArgumentException ("Couldn't write topic model to filename "+outputModelFilename.value);
}
}
}
else if (useNgrams.value) {
InstanceList ilist = InstanceList.load (new File(inputFile.value));
System.out.println ("Data loaded.");
if (inputModelFilename.value != null)
throw new IllegalArgumentException ("--input-model not supported with --use-ngrams.");
TopicalNGrams tng = new TopicalNGrams(numTopics.value,
alpha.value,
beta.value,
gamma.value,
delta.value,
delta1.value,
delta2.value);
tng.estimate (ilist, numIterations.value, showTopicsInterval.value,
outputModelInterval.value, outputModelFilename.value,
randomSeed.value == 0 ? new Randoms() : new Randoms(randomSeed.value));
tng.printTopWords(topWords.value, true);
if (stateFile.value != null)
tng.printState (new File(stateFile.value));
if (docTopicsFile.value != null) {
PrintWriter out = new PrintWriter (new FileWriter ((new File(docTopicsFile.value))));
tng.printDocumentTopics (out, docTopicsThreshold.value, docTopicsMax.value);
out.close();
}
if (outputModelFilename.value != null) {
assert (tng != null);
try {
ObjectOutputStream oos = new ObjectOutputStream (new FileOutputStream (outputModelFilename.value));
oos.writeObject (tng);
oos.close();
} catch (Exception e) {
e.printStackTrace();
throw new IllegalArgumentException ("Couldn't write topic model to filename "+outputModelFilename.value);
}
}
}
else if (languageInputFiles.value != null) {
// Start a new polylingual topic model
PolylingualTopicModel topicModel = null;
int numLanguages = languageInputFiles.value.length;
InstanceList[] training = new InstanceList[ languageInputFiles.value.length ];
for (int i=0; i < training.length; i++) {
training[i] = InstanceList.load(new File(languageInputFiles.value[i]));
if (training[i] != null) { System.out.println(i + " is not null"); }
else { System.out.println(i + " is null"); }
}
System.out.println ("Data loaded.");
// For historical reasons we currently only support FeatureSequence data,
// not the FeatureVector, which is the default for the input functions.
// Provide a warning to avoid ClassCastExceptions.
if (training[0].size() > 0 &&
training[0].get(0) != null) {
Object data = training[0].get(0).getData();
if (! (data instanceof FeatureSequence)) {
System.err.println("Topic modeling currently only supports feature sequences: use --keep-sequence option when importing data.");
System.exit(1);
}
}
topicModel = new PolylingualTopicModel (numTopics.value, alpha.value);
if (randomSeed.value != 0) {
topicModel.setRandomSeed(randomSeed.value);
}
topicModel.addInstances(training);
topicModel.setTopicDisplay(showTopicsInterval.value, topWords.value);
topicModel.setNumIterations(numIterations.value);
topicModel.setOptimizeInterval(optimizeInterval.value);
topicModel.setBurninPeriod(optimizeBurnIn.value);
if (outputStateInterval.value != 0) {
topicModel.setSaveState(outputStateInterval.value, stateFile.value);
}
if (outputModelInterval.value != 0) {
topicModel.setModelOutput(outputModelInterval.value, outputModelFilename.value);
}
topicModel.estimate();
if (topicKeysFile.value != null) {
topicModel.printTopWords(new File(topicKeysFile.value), topWords.value, false);
}
if (stateFile.value != null) {
topicModel.printState (new File(stateFile.value));
}
if (docTopicsFile.value != null) {
PrintWriter out = new PrintWriter (new FileWriter ((new File(docTopicsFile.value))));
topicModel.printDocumentTopics(out, docTopicsThreshold.value, docTopicsMax.value);
out.close();
}
if (inferencerFilename.value != null) {
try {
for (int language = 0; language < numLanguages; language++) {
ObjectOutputStream oos =
new ObjectOutputStream(new FileOutputStream(inferencerFilename.value + "." + language));
oos.writeObject(topicModel.getInferencer(language));
oos.close();
}
} catch (Exception e) {
System.err.println(e.getMessage());
}
}
if (outputModelFilename.value != null) {
assert (topicModel != null);
try {
ObjectOutputStream oos =
new ObjectOutputStream (new FileOutputStream (outputModelFilename.value));
oos.writeObject (topicModel);
oos.close();
} catch (Exception e) {
e.printStackTrace();
throw new IllegalArgumentException ("Couldn't write topic model to filename "+outputModelFilename.value);
}
}
}
else {
// Start a new LDA topic model
ParallelTopicModel topicModel = null;
if (inputModelFilename.value != null) {
try {
topicModel = ParallelTopicModel.read(new File(inputModelFilename.value));
} catch (Exception e) {
System.err.println("Unable to restore saved topic model " +
inputModelFilename.value + ": " + e);
System.exit(1);
}
/*
// Loading new data is optional if we are restoring a saved state.
if (inputFile.value != null) {
InstanceList instances = InstanceList.load (new File(inputFile.value));
System.out.println ("Data loaded.");
lda.addInstances(instances);
}
*/
}
else {
InstanceList training = null;
try {
if (inputFile.value.startsWith("db:")) {
training = DBInstanceIterator.getInstances(inputFile.value.substring(3));
}
else {
training = InstanceList.load (new File(inputFile.value));
}
} catch (Exception e) {
System.err.println("Unable to restore instance list " +
inputFile.value + ": " + e);
System.exit(1);
}
System.out.println ("Data loaded.");
if (training.size() > 0 &&
training.get(0) != null) {
Object data = training.get(0).getData();
if (! (data instanceof FeatureSequence)) {
System.err.println("Topic modeling currently only supports feature sequences: use --keep-sequence option when importing data.");
System.exit(1);
}
}
topicModel = new ParallelTopicModel (numTopics.value, alpha.value, beta.value);
if (randomSeed.value != 0) {
topicModel.setRandomSeed(randomSeed.value);
}
topicModel.addInstances(training);
}
topicModel.setTopicDisplay(showTopicsInterval.value, topWords.value);
/*
if (testingFile.value != null) {
topicModel.setTestingInstances( InstanceList.load(new File(testingFile.value)) );
}
*/
topicModel.setNumIterations(numIterations.value);
topicModel.setOptimizeInterval(optimizeInterval.value);
topicModel.setBurninPeriod(optimizeBurnIn.value);
topicModel.setSymmetricAlpha(useSymmetricAlpha.value);
if (outputStateInterval.value != 0) {
topicModel.setSaveState(outputStateInterval.value, stateFile.value);
}
if (outputModelInterval.value != 0) {
topicModel.setSaveSerializedModel(outputModelInterval.value, outputModelFilename.value);
}
topicModel.setNumThreads(numThreads.value);
topicModel.estimate();
if (topicKeysFile.value != null) {
topicModel.printTopWords(new File(topicKeysFile.value), topWords.value, false);
}
if (topicReportXMLFile.value != null) {
PrintWriter out = new PrintWriter(topicReportXMLFile.value);
topicModel.topicXMLReport(out, topWords.value);
out.close();
}
if (topicPhraseReportXMLFile.value != null) {
PrintWriter out = new PrintWriter(topicPhraseReportXMLFile.value);
topicModel.topicPhraseXMLReport(out, topWords.value);
out.close();
}
if (stateFile.value != null) {
topicModel.printState (new File(stateFile.value));
}
if (docTopicsFile.value != null) {
PrintWriter out = new PrintWriter (new FileWriter ((new File(docTopicsFile.value))));
topicModel.printDocumentTopics(out, docTopicsThreshold.value, docTopicsMax.value);
out.close();
}
if (topicWordWeightsFile.value != null) {
topicModel.printTopicWordWeights(new File (topicWordWeightsFile.value));
}
if (wordTopicCountsFile.value != null) {
topicModel.printTypeTopicCounts(new File (wordTopicCountsFile.value));
}
if (outputModelFilename.value != null) {
assert (topicModel != null);
try {
ObjectOutputStream oos =
new ObjectOutputStream (new FileOutputStream (outputModelFilename.value));
oos.writeObject (topicModel);
oos.close();
} catch (Exception e) {
e.printStackTrace();
throw new IllegalArgumentException ("Couldn't write topic model to filename "+outputModelFilename.value);
}
}
if (inferencerFilename.value != null) {
try {
ObjectOutputStream oos =
new ObjectOutputStream(new FileOutputStream(inferencerFilename.value));
oos.writeObject(topicModel.getInferencer());
oos.close();
} catch (Exception e) {
System.err.println(e.getMessage());
}
}
if (evaluatorFilename.value != null) {
try {
ObjectOutputStream oos =
new ObjectOutputStream(new FileOutputStream(evaluatorFilename.value));
oos.writeObject(topicModel.getProbEstimator());
oos.close();
} catch (Exception e) {
System.err.println(e.getMessage());
}
}
}
}
}