/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org. For further
information, see the file `LICENSE' included with this distribution. */
/**
@author Andrew McCallum <a href="mailto:mccallum@cs.umass.edu">mccallum@cs.umass.edu</a>
*/
package cc.mallet.pipe.iterator;
import java.net.URI;
import java.util.Iterator;
import java.util.logging.*;
import cc.mallet.pipe.Pipe;
import cc.mallet.pipe.iterator.PipeInputIterator;
import cc.mallet.types.Alphabet;
import cc.mallet.types.Dirichlet;
import cc.mallet.types.FeatureVector;
import cc.mallet.types.Instance;
import cc.mallet.types.Label;
import cc.mallet.types.LabelAlphabet;
import cc.mallet.types.Multinomial;
import cc.mallet.util.MalletLogger;
import cc.mallet.util.Randoms;
public class RandomFeatureVectorIterator implements Iterator<Instance>
{
private static Logger logger = MalletLogger.getLogger(RandomFeatureVectorIterator.class.getName());
Randoms r;
Dirichlet classCentroidDistribution;
double classCentroidAvergeAlphaMean;
double classCentroidAvergeAlphaVariance;
double featureVectorSizePoissonLambda;
double classInstanceCountPoissonLamba;
String[] classNames;
int[] numInstancesPerClass; // indexed over classes
Dirichlet[] classCentroid; // indexed over classes
int currentClassIndex;
int currentInstanceIndex;
public RandomFeatureVectorIterator (Randoms r,
// the generator of all random-ness used here
Dirichlet classCentroidDistribution,
// includes a Alphabet
double classCentroidAvergeAlphaMean,
// Gaussian mean on the sum of alphas
double classCentroidAvergeAlphaVariance,
// Gaussian variance on the sum of alphas
double featureVectorSizePoissonLambda,
double classInstanceCountPoissonLamba,
String[] classNames)
{
this.r = r;
this.classCentroidDistribution = classCentroidDistribution;
assert (classCentroidDistribution.getAlphabet() instanceof Alphabet);
this.classCentroidAvergeAlphaMean = classCentroidAvergeAlphaMean;
this.classCentroidAvergeAlphaVariance = classCentroidAvergeAlphaVariance;
this.featureVectorSizePoissonLambda = featureVectorSizePoissonLambda;
this.classInstanceCountPoissonLamba = classInstanceCountPoissonLamba;
this.classNames = classNames;
this.numInstancesPerClass = new int[classNames.length];
this.classCentroid = new Dirichlet[classNames.length];
for (int i = 0; i < classNames.length; i++) {
logger.fine ("classCentroidAvergeAlphaMean = "+classCentroidAvergeAlphaMean);
double aveAlpha = r.nextGaussian (classCentroidAvergeAlphaMean,
classCentroidAvergeAlphaVariance);
logger.fine ("aveAlpha = "+aveAlpha);
classCentroid[i] = classCentroidDistribution.randomDirichlet (r, aveAlpha);
//logger.fine ("Dirichlet for class "+classNames[i]); classCentroid[i].print();
}
reset ();
}
public RandomFeatureVectorIterator (Randoms r, Alphabet vocab, String[] classnames)
{
this (r, new Dirichlet(vocab, 2.0),
30, 0,
10, 20, classnames);
}
public Alphabet getAlphabet () { return classCentroidDistribution.getAlphabet(); }
private static Alphabet dictOfSize (int size)
{
Alphabet ret = new Alphabet ();
for (int i = 0; i < size; i++)
ret.lookupIndex ("feature"+i);
return ret;
}
private static String[] classNamesOfSize (int size)
{
String[] ret = new String[size];
for (int i = 0; i < size; i++)
ret[i] = "class"+i;
return ret;
}
public RandomFeatureVectorIterator (Randoms r, int vocabSize, int numClasses)
{
this (r, new Dirichlet(dictOfSize(vocabSize), 2.0),
30, 0,
10, 20, classNamesOfSize(numClasses));
}
public void reset ()
{
for (int i = 0; i < classNames.length; i++) {
this.numInstancesPerClass[i] = r.nextPoisson (classInstanceCountPoissonLamba);
logger.fine ("Class "+classNames[i]+" will have "
+numInstancesPerClass[i]+" instances.");
}
this.currentClassIndex = classNames.length - 1;
this.currentInstanceIndex = numInstancesPerClass[currentClassIndex] - 1;
}
public LabelAlphabet getLabelAlphabet () { return null; }
public Instance next ()
{
if (currentInstanceIndex < 0) {
if (currentClassIndex <= 0)
throw new IllegalStateException ("No next FeatureVector.");
currentClassIndex--;
currentInstanceIndex = numInstancesPerClass[currentClassIndex] - 1;
}
URI uri = null;
try { uri = new URI ("random:" + classNames[currentClassIndex] + "/" + currentInstanceIndex); }
catch (Exception e) {e.printStackTrace(); throw new IllegalStateException (); }
//xxx Producing small numbers? int randomSize = r.nextPoisson (featureVectorSizePoissonLambda);
int randomSize = (int)featureVectorSizePoissonLambda;
FeatureVector fv = classCentroid[currentClassIndex].randomFeatureVector (r, randomSize);
//logger.fine ("FeatureVector "+currentClassIndex+" "+currentInstanceIndex); fv.print();
currentInstanceIndex--;
return new Instance (fv, classNames[currentClassIndex], uri, null);
}
public boolean hasNext () { return ! (currentClassIndex == 0 && currentInstanceIndex == 0); }
public void remove () {
throw new IllegalStateException ("This Iterator<Instance> does not support remove().");
}
}