Package cc.mallet.fst

Source Code of cc.mallet.fst.SumLatticeConstrained

package cc.mallet.fst;

import java.util.logging.Level;
import java.util.logging.Logger;

import cc.mallet.fst.SumLatticeDefault.LatticeNode;
import cc.mallet.fst.Transducer.State;
import cc.mallet.fst.Transducer.TransitionIterator;
import cc.mallet.types.DenseVector;
import cc.mallet.types.LabelAlphabet;
import cc.mallet.types.LabelVector;
import cc.mallet.types.MatrixOps;
import cc.mallet.types.Sequence;
import cc.mallet.util.MalletLogger;


public class SumLatticeConstrained extends SumLatticeDefault {
 
  private static Logger logger = MalletLogger.getLogger(SumLatticeConstrained.class.getName());

  public SumLatticeConstrained (Transducer t, Sequence input, Sequence output, Segment requiredSegment, Sequence constrainedSequence) {
    this (t, input, output, (Transducer.Incrementor)null, null, makeConstraints(t, input, output, requiredSegment, constrainedSequence));
  }
  private static int[] makeConstraints (Transducer t, Sequence inputSequence, Sequence outputSequence, Segment requiredSegment, Sequence constrainedSequence) {
    if (constrainedSequence.size () != inputSequence.size ())
      throw new IllegalArgumentException ("constrainedSequence.size [" + constrainedSequence.size () + "] != inputSequence.size [" + inputSequence.size () + "]");
    // constraints tells the lattice which states must emit which
    // observations.  positive values say all paths must pass through
    // this state index, negative values say all paths must _not_
    // pass through this state index.  0 means we don't
    // care. initialize to 0. include 1 extra node for start state.
    int [] constraints = new int [constrainedSequence.size() + 1];
    for (int c = 0; c < constraints.length; c++)
      constraints[c] = 0;
    for (int i=requiredSegment.getStart (); i <= requiredSegment.getEnd(); i++) {
      int si = t.stateIndexOfString ((String)constrainedSequence.get (i));
      if (si == -1)
        logger.warning ("Could not find state " + constrainedSequence.get (i) + ". Check that state labels match startTages and inTags, and that all labels are seen in training data.");
//      throw new IllegalArgumentException ("Could not find state " + constrainedSequence.get(i) + ". Check that state labels match startTags and InTags.");
      constraints[i+1] = si + 1;
    }
    // set additional negative constraint to ensure state after
    // segment is not a continue tag

    // xxx if segment length=1, this actually constrains the sequence
    // to B-tag (B-tag)', instead of the intended constraint of B-tag
    // (I-tag)'
    // the fix below is unsafe, but will have to do for now.
    // FIXED BELOW
    /*    String endTag = (String) constrainedSequence.get (requiredSegment.getEnd ());
        if (requiredSegment.getEnd()+2 < constraints.length) {
          if (requiredSegment.getStart() == requiredSegment.getEnd()) { // segment has length 1
            if (endTag.startsWith ("B-")) {
              endTag = "I" + endTag.substring (1, endTag.length());
            }
            else if (!(endTag.startsWith ("I-") || endTag.startsWith ("0")))
              throw new IllegalArgumentException ("Constrained Lattice requires that states are tagged in B-I-O format.");
          }
          int statei = stateIndexOfString (endTag);
          if (statei == -1) // no I- tag for this B- tag
            statei = stateIndexOfString ((String)constrainedSequence.get (requiredSegment.getStart ()));
          constraints[requiredSegment.getEnd() + 2] = - (statei + 1);
        }
     */
    if (requiredSegment.getEnd() + 2 < constraints.length) { // if
      String endTag = requiredSegment.getInTag().toString();
      int statei = t.stateIndexOfString (endTag);
      if (statei == -1)
        throw new IllegalArgumentException ("Could not find state " + endTag + ". Check that state labels match startTags and InTags.");
      constraints[requiredSegment.getEnd() + 2] = - (statei + 1);
    }

    //    printStates ();
    logger.fine ("Segment:\n" + requiredSegment.sequenceToString () +
        "\nconstrainedSequence:\n" + constrainedSequence +
    "\nConstraints:\n");
    for (int i=0; i < constraints.length; i++) {
      logger.fine (constraints[i] + "\t");
    }
    logger.fine ("");
    return constraints;
  }

  // culotta: constructor for constrained lattice
  /** Create a lattice that constrains its transitions such that the
   * <position,label> pairs in "constraints" are adhered
   * to. constraints is an array where each entry is the index of
   * the required label at that position. An entry of 0 means there
   * are no constraints on that <position, label>. Positive values
   * mean the path must pass through that state. Negative values
   * mean the path must _not_ pass through that state. NOTE -
   * constraints.length must be equal to output.size() + 1. A
   * lattice has one extra position for the initial
   * state. Generally, this should be unconstrained, since it does
   * not produce an observation.
   */
  public SumLatticeConstrained (Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, LabelAlphabet outputAlphabet, int [] constraints)
  {
    if (false && logger.isLoggable (Level.FINE)) {
      logger.fine ("Starting Lattice");
      logger.fine ("Input: ");
      for (int ip = 0; ip < input.size(); ip++)
        logger.fine (" " + input.get(ip));
      logger.fine ("\nOutput: ");
      if (output == null)
        logger.fine ("null");
      else
        for (int op = 0; op < output.size(); op++)
          logger.fine (" " + output.get(op));
      logger.fine ("\n");
    }

    // Initialize some structures
    this.t = trans;
    this.input = input;
    this.output = output;
    // xxx Not very efficient when the lattice is actually sparse,
    // especially when the number of states is large and the
    // sequence is long.
    latticeLength = input.size()+1;
    int numStates = t.numStates();
    nodes = new LatticeNode[latticeLength][numStates];
    // xxx Yipes, this could get big; something sparse might be better?
    gammas = new double[latticeLength][numStates];
    // xxx Move this to an ivar, so we can save it?  But for what?
    // Commenting this out, because it's a memory hog and not used right now.
    //  Uncomment and conditionalize under a flag if ever needed. -cas
    // double xis[][][] = new double[latticeLength][numStates][numStates];
    double outputCounts[][] = null;
    if (outputAlphabet != null)
      outputCounts = new double[latticeLength][outputAlphabet.size()];

    for (int i = 0; i < numStates; i++) {
      for (int ip = 0; ip < latticeLength; ip++)
        gammas[ip][i] = Transducer.IMPOSSIBLE_WEIGHT;
      /* Commenting out xis -cas
      for (int j = 0; j < numStates; j++)
        for (int ip = 0; ip < latticeLength; ip++)
          xis[ip][i][j] = IMPOSSIBLE_WEIGHT;
       */
    }

    // Forward pass
    logger.fine ("Starting Constrained Foward pass");

    // ensure that at least one state has initial weight greater than -Infinity
    // so we can start from there
    boolean atLeastOneInitialState = false;
    for (int i = 0; i < numStates; i++) {
      double initialWeight = t.getState(i).getInitialWeight();
      //System.out.println ("Forward pass initialWeight = "+initialWeight);
      if (initialWeight > Transducer.IMPOSSIBLE_WEIGHT) {
        getLatticeNode(0, i).alpha = initialWeight;
        //System.out.println ("nodes[0][i].alpha="+nodes[0][i].alpha);
        atLeastOneInitialState = true;
      }
    }

    if (atLeastOneInitialState == false)
      logger.warning ("There are no starting states!");
    for (int ip = 0; ip < latticeLength-1; ip++)
      for (int i = 0; i < numStates; i++) {
        logger.fine ("ip=" + ip+", i=" + i);
        // check if this node is possible at this <position,
        // label>. if not, skip it.
        if (constraints[ip] > 0) { // must be in state indexed by constraints[ip] - 1
          if (constraints[ip]-1 != i) {
            logger.fine ("Current state does not match positive constraint. position="+ip+", constraint="+(constraints[ip]-1)+", currState="+i);
            continue;
          }
        }
        else if (constraints[ip] < 0) { // must _not_ be in state indexed by constraints[ip]
          if (constraints[ip]+1 == -i) {
            logger.fine ("Current state does not match negative constraint. position="+ip+", constraint="+(constraints[ip]+1)+", currState="+i);
            continue;
          }
        }
        if (nodes[ip][i] == null || nodes[ip][i].alpha == Transducer.IMPOSSIBLE_WEIGHT) {
          // xxx if we end up doing this a lot,
          // we could save a list of the non-null ones
          if (nodes[ip][i] == null) logger.fine ("nodes[ip][i] is NULL");
          else if (nodes[ip][i].alpha == Transducer.IMPOSSIBLE_WEIGHT) logger.fine ("nodes[ip][i].alpha is -Inf");
          logger.fine ("-INFINITE weight or NULL...skipping");
          continue;
        }
        State s = t.getState(i);

        TransitionIterator iter = s.transitionIterator (input, ip, output, ip);
        if (logger.isLoggable (Level.FINE))
          logger.fine (" Starting Forward transition iteration from state "
              + s.getName() + " on input " + input.get(ip).toString()
              + " and output "
              + (output==null ? "(null)" : output.get(ip).toString()));
        while (iter.hasNext()) {
          State destination = iter.nextState();
          boolean legalTransition = true;
          // check constraints to see if node at <ip,i> can transition to destination
          if (ip+1 < constraints.length && constraints[ip+1] > 0 && ((constraints[ip+1]-1) != destination.getIndex())) {
            logger.fine ("Destination state does not match positive constraint. Assigning -infinite weight. position="+(ip+1)+", constraint="+(constraints[ip+1]-1)+", source ="+i+", destination="+destination.getIndex());
            legalTransition = false;
          }
          else if (((ip+1) < constraints.length) && constraints[ip+1] < 0 && (-(constraints[ip+1]+1) == destination.getIndex())) {
            logger.fine ("Destination state does not match negative constraint. Assigning -infinite weight. position="+(ip+1)+", constraint="+(constraints[ip+1]+1)+", destination="+destination.getIndex());
            legalTransition = false;
          }

          if (logger.isLoggable (Level.FINE))
            logger.fine ("Forward Lattice[inputPos="+ip
                +"][source="+s.getName()
                +"][dest="+destination.getName()+"]");
          LatticeNode destinationNode = getLatticeNode (ip+1, destination.getIndex());
          destinationNode.output = iter.getOutput();
          double transitionWeight = iter.getWeight();
          if (legalTransition) {
            //if (logger.isLoggable (Level.FINE))
            logger.fine ("transitionWeight="+transitionWeight
                +" nodes["+ip+"]["+i+"].alpha="+nodes[ip][i].alpha
                +" destinationNode.alpha="+destinationNode.alpha);
            destinationNode.alpha = Transducer.sumLogProb (destinationNode.alpha,
                nodes[ip][i].alpha + transitionWeight);
            //System.out.println ("destinationNode.alpha <- "+destinationNode.alpha);
            logger.fine ("Set alpha of latticeNode at ip = "+ (ip+1) + " stateIndex = " + destination.getIndex() + ", destinationNode.alpha = " + destinationNode.alpha);
          }
          else {
            // this is an illegal transition according to our
            // constraints, so set its prob to 0 . NO, alpha's are
            // unnormalized weights...set to -Inf //
            // destinationNode.alpha = 0.0;
//            destinationNode.alpha = IMPOSSIBLE_WEIGHT;
            logger.fine ("Illegal transition from state " + i + " to state " + destination.getIndex() + ". Setting alpha to -Inf");
          }
        }
      }

    // Calculate total weight of Lattice.  This is the normalizer
    totalWeight = Transducer.IMPOSSIBLE_WEIGHT;
    for (int i = 0; i < numStates; i++)
      if (nodes[latticeLength-1][i] != null) {
        // Note: actually we could sum at any ip index,
        // the choice of latticeLength-1 is arbitrary
        //System.out.println ("Ending alpha, state["+i+"] = "+nodes[latticeLength-1][i].alpha);
        //System.out.println ("Ending beta,  state["+i+"] = "+getState(i).finalWeight);
        if (constraints[latticeLength-1] > 0 && i != constraints[latticeLength-1]-1)
          continue;
        if (constraints[latticeLength-1] < 0 && -i == constraints[latticeLength-1]+1)
          continue;
        logger.fine ("Summing final lattice weight. state="+i+", alpha="+nodes[latticeLength-1][i].alpha + ", final weight = "+t.getState(i).getFinalWeight());
        totalWeight = Transducer.sumLogProb (totalWeight,
            (nodes[latticeLength-1][i].alpha + t.getState(i).getFinalWeight()));
      }
    // Weight is now an "unnormalized weight" of the entire Lattice
    //assert (weight >= 0) : "weight = "+weight;

    // If the sequence has -infinite weight, just return.
    // Usefully this avoids calling any incrementX methods.
    // It also relies on the fact that the gammas[][] and .alpha and .beta values
    // are already initialized to values that reflect -infinite weight
    // xxx Although perhaps not all (alphas,betas) exactly correctly reflecting?
    if (totalWeight == Transducer.IMPOSSIBLE_WEIGHT)
      return;

    // Backward pass
    for (int i = 0; i < numStates; i++)
      if (nodes[latticeLength-1][i] != null) {
        State s = t.getState(i);
        nodes[latticeLength-1][i].beta = s.getFinalWeight();
        gammas[latticeLength-1][i] =
          nodes[latticeLength-1][i].alpha + nodes[latticeLength-1][i].beta - totalWeight;
        if (incrementor != null) {
          double p = Math.exp(gammas[latticeLength-1][i]);
          assert (p >= 0.0 && p <= 1.0 && !Double.isNaN(p))  : "p="+p+" gamma="+gammas[latticeLength-1][i];
          incrementor.incrementFinalState(s, p);
        }
      }
    for (int ip = latticeLength-2; ip >= 0; ip--) {
      for (int i = 0; i < numStates; i++) {
        if (nodes[ip][i] == null || nodes[ip][i].alpha == Transducer.IMPOSSIBLE_WEIGHT)
          // Note that skipping here based on alpha means that beta values won't
          // be correct, but since alpha is -infinite anyway, it shouldn't matter.
          continue;
        State s = t.getState(i);
        TransitionIterator iter = s.transitionIterator (input, ip, output, ip);
        while (iter.hasNext()) {
          State destination = iter.nextState();
          if (logger.isLoggable (Level.FINE))
            logger.fine ("Backward Lattice[inputPos="+ip
                +"][source="+s.getName()
                +"][dest="+destination.getName()+"]");
          int j = destination.getIndex();
          LatticeNode destinationNode = nodes[ip+1][j];
          if (destinationNode != null) {
            double transitionWeight = iter.getWeight();
            assert (!Double.isNaN(transitionWeight));
            //              assert (transitionWeight >= 0);  Not necessarily
            double oldBeta = nodes[ip][i].beta;
            assert (!Double.isNaN(nodes[ip][i].beta));
            nodes[ip][i].beta = Transducer.sumLogProb (nodes[ip][i].beta,
                destinationNode.beta + transitionWeight);
            assert (!Double.isNaN(nodes[ip][i].beta))
            : "dest.beta="+destinationNode.beta+" trans="+transitionWeight+" sum="+(destinationNode.beta+transitionWeight)
            + " oldBeta="+oldBeta;
            // xis[ip][i][j] = nodes[ip][i].alpha + transitionWeight + nodes[ip+1][j].beta - weight;
            assert (!Double.isNaN(nodes[ip][i].alpha));
            assert (!Double.isNaN(transitionWeight));
            assert (!Double.isNaN(nodes[ip+1][j].beta));
            assert (!Double.isNaN(totalWeight));
            if (incrementor != null || outputAlphabet != null) {
              double xi = nodes[ip][i].alpha + transitionWeight + nodes[ip+1][j].beta - totalWeight;
              double p = Math.exp(xi);
              assert (p > Transducer.IMPOSSIBLE_WEIGHT && !Double.isNaN(p)) : "xis["+ip+"]["+i+"]["+j+"]="+xi;
              if (incrementor != null)
                incrementor.incrementTransition(iter, p);
              if (outputAlphabet != null) {
                int outputIndex = outputAlphabet.lookupIndex (iter.getOutput(), false);
                assert (outputIndex >= 0);
                // xxx This assumes that "ip" == "op"!
                outputCounts[ip][outputIndex] += p;
                //System.out.println ("CRF Lattice outputCounts["+ip+"]["+outputIndex+"]+="+p);
              }
            }
          }
        }
        gammas[ip][i] = nodes[ip][i].alpha + nodes[ip][i].beta - totalWeight;
      }
    }
    if (incrementor != null)
      for (int i = 0; i < numStates; i++) {
        double p = Math.exp(gammas[0][i]);
        assert (p > Transducer.IMPOSSIBLE_WEIGHT && !Double.isNaN(p));
        incrementor.incrementInitialState(t.getState(i), p);
      }
    if (outputAlphabet != null) {
      labelings = new LabelVector[latticeLength];
      for (int ip = latticeLength-2; ip >= 0; ip--) {
        assert (Math.abs(1.0-MatrixOps.sum (outputCounts[ip])) < 0.000001);;
        labelings[ip] = new LabelVector (outputAlphabet, outputCounts[ip]);
      }
    }
  }
 
  // The following used to be in fst.Transducer.
  // Does it still apply?  Does it still need addressing?
  // -akm
 
  // culotta: interface for constrained lattice
  /**
     Create constrained lattice such that all paths pass through the
     the labeling of <code> requiredSegment </code> as indicated by
     <code> constrainedSequence </code>
     @param inputSequence input sequence
     @param outputSequence output sequence
     @param requiredSegment segment of sequence that must be labelled
     @param constrainedSequence lattice must have labels of this
     sequence from <code> requiredSegment.start </code> to <code>
     requiredSegment.end </code> correctly
   *//*
  public Lattice forwardBackward (Sequence inputSequence,
                                  Sequence outputSequence,
                                  Segment requiredSegment,
                                  Sequence constrainedSequence) {
    if (constrainedSequence.size () != inputSequence.size ())
      throw new IllegalArgumentException ("constrainedSequence.size [" + constrainedSequence.size () + "] != inputSequence.size [" + inputSequence.size () + "]");
    // constraints tells the lattice which states must emit which
    // observations.  positive values say all paths must pass through
    // this state index, negative values say all paths must _not_
    // pass through this state index.  0 means we don't
    // care. initialize to 0. include 1 extra node for start state.
    int [] constraints = new int [constrainedSequence.size() + 1];
    for (int c = 0; c < constraints.length; c++)
      constraints[c] = 0;
    for (int i=requiredSegment.getStart (); i <= requiredSegment.getEnd(); i++) {
      int si = stateIndexOfString ((String)constrainedSequence.get (i));
      if (si == -1)
        logger.warning ("Could not find state " + constrainedSequence.get (i) + ". Check that state labels match startTages and inTags, and that all labels are seen in training data.");
//      throw new IllegalArgumentException ("Could not find state " + constrainedSequence.get(i) + ". Check that state labels match startTags and InTags.");
      constraints[i+1] = si + 1;
    }
    // set additional negative constraint to ensure state after
    // segment is not a continue tag

    // xxx if segment length=1, this actually constrains the sequence
    // to B-tag (B-tag)', instead of the intended constraint of B-tag
    // (I-tag)'
    // the fix below is unsafe, but will have to do for now.
    // FIXED BELOW
    /*    String endTag = (String) constrainedSequence.get (requiredSegment.getEnd ());
    if (requiredSegment.getEnd()+2 < constraints.length) {
      if (requiredSegment.getStart() == requiredSegment.getEnd()) { // segment has length 1
        if (endTag.startsWith ("B-")) {
          endTag = "I" + endTag.substring (1, endTag.length());
        }
        else if (!(endTag.startsWith ("I-") || endTag.startsWith ("0")))
          throw new IllegalArgumentException ("Constrained Lattice requires that states are tagged in B-I-O format.");
      }
      int statei = stateIndexOfString (endTag);
      if (statei == -1) // no I- tag for this B- tag
        statei = stateIndexOfString ((String)constrainedSequence.get (requiredSegment.getStart ()));
      constraints[requiredSegment.getEnd() + 2] = - (statei + 1);
    }
     *//*
    if (requiredSegment.getEnd() + 2 < constraints.length) { // if
      String endTag = requiredSegment.getInTag().toString();
      int statei = stateIndexOfString (endTag);
      if (statei == -1)
        logger.fine ("Could not find state " + endTag + ". Check that state labels match startTags and InTags.");
      else
        constraints[requiredSegment.getEnd() + 2] = - (statei + 1);     
    }

    logger.fine ("Segment:\n" + requiredSegment.sequenceToString () +
        "\nconstrainedSequence:\n" + constrainedSequence +
    "\nConstraints:\n");
    for (int i=0; i < constraints.length; i++) {
      logger.fine (constraints[i] + "\t");
    }
    logger.fine ("");
    return forwardBackward (inputSequence, outputSequence, constraints);
  }   
*/

TOP

Related Classes of cc.mallet.fst.SumLatticeConstrained

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.