/* Copyright (C) 2011 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org. For further
information, see the file `LICENSE' included with this distribution. */
package cc.mallet.classify.constraints.pr;
import gnu.trove.TDoubleArrayList;
import gnu.trove.TIntArrayList;
import gnu.trove.TIntObjectHashMap;
import java.util.BitSet;
import cc.mallet.types.FeatureVector;
import cc.mallet.types.Instance;
import cc.mallet.types.InstanceList;
/**
* Abstract expectation constraint for use with Posterior Regularization (PR).
*
* @author Gregory Druck
*/
public abstract class MaxEntFLPRConstraints implements MaxEntPRConstraint {
protected boolean useValues;
protected int numFeatures;
protected int numLabels;
// maps between input feature indices and constraints
protected TIntObjectHashMap<MaxEntFLPRConstraint> constraints;
// cache of set of constrained features that fire at last FeatureVector
// provided in preprocess call
protected TIntArrayList indexCache;
protected TDoubleArrayList valueCache;
public MaxEntFLPRConstraints(int numFeatures, int numLabels, boolean useValues) {
this.useValues = useValues;
this.numFeatures = numFeatures;
this.numLabels = numLabels;
this.constraints = new TIntObjectHashMap<MaxEntFLPRConstraint>();
this.indexCache = new TIntArrayList();
this.valueCache = new TDoubleArrayList();
}
public abstract void addConstraint(int fi, double[] ex, double weight);
public void incrementExpectations(FeatureVector input, double[] dist, double weight) {
preProcess(input);
for (int li = 0; li < numLabels; li++) {
double p = weight * dist[li];
for (int i = 0; i < indexCache.size(); i++) {
if (useValues) {
constraints.get(indexCache.getQuick(i)).expectation[li] += p * valueCache.getQuick(i);
}
else {
constraints.get(indexCache.getQuick(i)).expectation[li] += p;
}
}
}
}
public void zeroExpectations() {
for (int fi : constraints.keys()) {
constraints.get(fi).expectation = new double[numLabels];
}
}
public BitSet preProcess(InstanceList data) {
// count
int ii = 0;
int fi;
FeatureVector fv;
BitSet bitSet = new BitSet(data.size());
for (Instance instance : data) {
double weight = data.getInstanceWeight(instance);
fv = (FeatureVector)instance.getData();
for (int loc = 0; loc < fv.numLocations(); loc++) {
fi = fv.indexAtLocation(loc);
if (constraints.containsKey(fi)) {
if (useValues) {
constraints.get(fi).count += weight * fv.valueAtLocation(loc);
}
else {
constraints.get(fi).count += weight;
}
bitSet.set(ii);
}
}
ii++;
// default feature, for label regularization
if (constraints.containsKey(numFeatures)) {
bitSet.set(ii);
constraints.get(numFeatures).count += weight;
}
}
return bitSet;
}
public void preProcess(FeatureVector input) {
indexCache.resetQuick();
if (useValues) valueCache.resetQuick();
int fi;
// cache constrained input features
for (int loc = 0; loc < input.numLocations(); loc++) {
fi = input.indexAtLocation(loc);
if (constraints.containsKey(fi)) {
indexCache.add(fi);
if (useValues) valueCache.add(input.valueAtLocation(loc));
}
}
// default feature, for label regularization
if (constraints.containsKey(numFeatures)) {
indexCache.add(numFeatures);
if (useValues) valueCache.add(1);
}
}
protected abstract class MaxEntFLPRConstraint {
protected double count;
protected double weight;
protected double[] target;
protected double[] expectation;
public MaxEntFLPRConstraint(double[] target, double weight) {
this.count = 0;
this.weight = weight;
this.target = target;
this.expectation = null;
}
public double[] getTarget() {
return target;
}
public double[] getExpectation() {
return expectation;
}
public double getCount() {
return count;
}
public double getWeight() {
return weight;
}
}
}