Package weka.classifiers.mi.supportVector

Source Code of weka.classifiers.mi.supportVector.MIPolyKernel

/*
*    This program is free software; you can redistribute it and/or modify
*    it under the terms of the GNU General Public License as published by
*    the Free Software Foundation; either version 2 of the License, or
*    (at your option) any later version.
*
*    This program is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*    GNU General Public License for more details.
*
*    You should have received a copy of the GNU General Public License
*    along with this program; if not, write to the Free Software
*    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

/*
* MIPolyKernel.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/

package weka.classifiers.mi.supportVector;

import weka.classifiers.functions.supportVector.PolyKernel;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.RevisionUtils;
import weka.core.Capabilities.Capability;

/**
<!-- globalinfo-start -->
* The polynomial kernel : K(x, y) = &lt;x, y&gt;^p or K(x, y) = (&lt;x, y&gt;+1)^p
* <p/>
<!-- globalinfo-end -->
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -D
*  Enables debugging output (if available) to be printed.
*  (default: off)</pre>
*
* <pre> -no-checks
*  Turns off all checks - use with caution!
*  (default: checks on)</pre>
*
* <pre> -C &lt;num&gt;
*  The size of the cache (a prime number), 0 for full cache and
*  -1 to turn it off.
*  (default: 250007)</pre>
*
* <pre> -E &lt;num&gt;
*  The Exponent to use.
*  (default: 1.0)</pre>
*
* <pre> -L
*  Use lower-order terms.
*  (default: no)</pre>
*
<!-- options-end -->
*
* @author Eibe Frank (eibe@cs.waikato.ac.nz)
* @author Shane Legg (shane@intelligenesis.net) (sparse vector code)
* @author Stuart Inglis (stuart@reeltwo.com) (sparse vector code)
* @author Lin Dong (ld21@cs.waikato.ac.nz) (MIkernel)
* @version $Revision: 1.4 $
*/
public class MIPolyKernel
  extends PolyKernel
  implements MultiInstanceCapabilitiesHandler {

  /** for serialiation */
  private static final long serialVersionUID = 7926421479341051777L;

  /**
   * default constructor - does nothing.
   */
  public MIPolyKernel() {
    super();
  }

  /**
   * Creates a new <code>MIPolyKernel</code> instance.
   *
   * @param data  the training dataset used.
   * @param cacheSize  the size of the cache (a prime number)
   * @param exponent  the exponent to use
   * @param lowerOrder  whether to use lower-order terms
   * @throws Exception  if something goes wrong
   */
  public MIPolyKernel(Instances data, int cacheSize, double exponent,
      boolean lowerOrder) throws Exception {

    super(data, cacheSize, exponent, lowerOrder);
  }

  /**
   *
   * @param id1     the index of instance 1
   * @param id2    the index of instance 2
   * @param inst1  the instance 1 object
   * @return     the dot product
   * @throws Exception   if something goes wrong
   */
  protected double evaluate(int id1, int id2, Instance inst1)
    throws Exception {

    double result, res;
    Instances data1= new Instances(inst1.relationalValue(1));
    Instances data2;
    if(id1==id2)
      data2= new Instances(data1);
    else
      data2 = new Instances (m_data.instance(id2).relationalValue(1));

    res=0;
    for(int i=0; i<data1.numInstances();i++){
      for (int j=0; j<data2.numInstances(); j++){
        result = dotProd(data1.instance(i), data2.instance(j));

        // Use lower order terms?
        if (getUseLowerOrder()) {
          result += 1.0;
        }
        if (getExponent() != 1.0) {
          result = Math.pow(result, getExponent());
        }

        res += result;
      }
    }

    return res;
  }

  /**
   * Returns the Capabilities of this kernel.
   *
   * @return            the capabilities of this object
   * @see               Capabilities
   */
  public Capabilities getCapabilities() {
    Capabilities result = super.getCapabilities();

    // attributes
    result.enable(Capability.NOMINAL_ATTRIBUTES);
    result.enable(Capability.RELATIONAL_ATTRIBUTES);
    result.enable(Capability.MISSING_VALUES);

    // class
    result.enableAllClasses();

    // other
    result.enable(Capability.ONLY_MULTIINSTANCE);
   
    return result;
  }

  /**
   * Returns the capabilities of this multi-instance kernel for the
   * relational data.
   *
   * @return            the capabilities of this object
   * @see               Capabilities
   */
  public Capabilities getMultiInstanceCapabilities() {
    Capabilities result = super.getCapabilities();
   
    // class
    result.disableAllClasses();
    result.enable(Capability.NO_CLASS);
   
    return result;
  }
 
  /**
   * Returns the revision string.
   *
   * @return    the revision
   */
  public String getRevision() {
    return RevisionUtils.extract("$Revision: 1.4 $");
  }
}
TOP

Related Classes of weka.classifiers.mi.supportVector.MIPolyKernel

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.