/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Discriminative Multinomial Naive Bayes for Text Classification
* Copyright (C) 2008 Jiang Su
*/
package weka.classifiers.bayes;
import weka.classifiers.Classifier;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.classifiers.UpdateableClassifier;
import java.util.*;
import java.io.Serializable;
import weka.core.Capabilities;
import weka.core.OptionHandler;
/**
<!-- globalinfo-start -->
* Class for building and using a Discriminative Multinomial Naive Bayes classifier. For more information see,<br/>
* <br/>
* Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin: Discriminative Parameter Learning for Bayesian Networks. In: ICML 2008', 2008.<br/>
* <br/>
* The core equation for this classifier:<br/>
* <br/>
* P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)<br/>
* <br/>
* where Ci is class i and D is a document.
* <p/>
<!-- globalinfo-end -->
*
<!-- technical-bibtex-start -->
* BibTeX:
* <pre>
* @inproceedings{JiangSu2008,
* author = {Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin},
* booktitle = {ICML 2008'},
* title = {Discriminative Parameter Learning for Bayesian Networks},
* year = {2008}
* }
* </pre>
* <p/>
<!-- technical-bibtex-end -->
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -D
* If set, classifier is run in debug mode and
* may output additional info to the console</pre>
*
<!-- options-end -->
/* @author Jiang Su (Jiang.Su@unb.ca) 2008
* @version $Revision: 1.2 $
*/
public class DMNBtext extends Classifier
implements OptionHandler, WeightedInstancesHandler,
TechnicalInformationHandler, UpdateableClassifier {
/** for serialization */
static final long serialVersionUID = 5932177450183457085L;
/** The number of iterations. */
protected int m_NumIterations = 1;
protected boolean m_BinaryWord = true;
int m_numClasses=-1;
protected Instances m_headerInfo;
DNBBinary[] m_binaryClassifiers = null;
/**
* Returns a string describing this classifier
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return
"Class for building and using a Discriminative Multinomial Naive Bayes classifier. "
+ "For more information see,\n\n"
+ getTechnicalInformation().toString() + "\n\n"
+ "The core equation for this classifier:\n\n"
+ "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n"
+ "where Ci is class i and D is a document.";
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin");
result.setValue(Field.YEAR, "2008");
result.setValue(Field.TITLE, "Discriminative Parameter Learning for Bayesian Networks");
result.setValue(Field.BOOKTITLE, "ICML 2008'");
return result;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
// attributes
result.enable(Capability.NUMERIC_ATTRIBUTES);
// class
result.enable(Capability.NOMINAL_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
return result;
}
/**
* Generates the classifier.
*
* @param instances set of instances serving as training data
* @exception Exception if the classifier has not been generated successfully
*/
public void buildClassifier(Instances data) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
Instances instances = new Instances(data);
instances.deleteWithMissingClass();
m_binaryClassifiers = new DNBBinary[instances.numClasses()];
m_numClasses=instances.numClasses();
m_headerInfo = new Instances(instances, 0);
for (int i = 0; i < instances.numClasses(); i++) {
m_binaryClassifiers[i] = new DNBBinary();
m_binaryClassifiers[i].setTargetClass(i);
m_binaryClassifiers[i].initClassifier(instances);
}
if (instances.numInstances() == 0)
return;
//Iterative update
Random random = new Random();
for (int it = 0; it < m_NumIterations; it++) {
for (int i = 0; i < instances.numInstances(); i++) {
updateClassifier(instances.instance(i));
}
}
// Utils.normalize(m_oldClassDis);
// Utils.normalize(m_ClassDis);
// m_originalPositive = m_oldClassDis[0];
// m_positive = m_ClassDis[0];
}
/**
* Updates the classifier with the given instance.
*
* @param instance the new training instance to include in the model
* @exception Exception if the instance could not be incorporated in
* the model.
*/
public void updateClassifier(Instance instance) throws Exception {
if (m_numClasses == 2) {
m_binaryClassifiers[0].updateClassifier(instance);
} else {
for (int i = 0; i < instance.numClasses(); i++)
m_binaryClassifiers[i].updateClassifier(instance);
}
}
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return predicted class probability distribution
* @exception Exception if there is a problem generating the prediction
*/
public double[] distributionForInstance(Instance instance) throws Exception {
if (m_numClasses == 2) {
// System.out.println(m_binaryClassifiers[0].getProbForTargetClass(instance));
return m_binaryClassifiers[0].distributionForInstance(instance);
}
double[] logDocGivenClass = new double[instance.numClasses()];
for (int i = 0; i < m_numClasses; i++)
logDocGivenClass[i] = m_binaryClassifiers[i].getLogProbForTargetClass(instance);
double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)];
for(int i = 0; i<m_numClasses; i++)
logDocGivenClass[i] = Math.exp(logDocGivenClass[i] - max);
try {
Utils.normalize(logDocGivenClass);
} catch (Exception e) {
e.printStackTrace();
}
return logDocGivenClass;
}
/**
* Returns a string representation of the classifier.
*
* @return a string representation of the classifier
*/
public String toString() {
StringBuffer result = new StringBuffer("");
result.append("The log ratio of two conditional probabilities of a word w_i: log(p(w_i)|+)/p(w_i)|-)) in decent order based on their absolute values\n");
result.append("Can be used to measure the discriminative power of each word.\n");
if (m_numClasses == 2) {
// System.out.println(m_binaryClassifiers[0].getProbForTargetClass(instance));
return result.append(m_binaryClassifiers[0].toString()).toString();
}
for (int i = 0; i < m_numClasses; i++)
{ result.append(i+" against the rest classes\n");
result.append(m_binaryClassifiers[i].toString()+"\n");
}
return result.toString();
}
/*
* Options after -- are passed to the designated classifier.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String iterations = Utils.getOption('I', options);
if (iterations.length() != 0) {
setNumIterations(Integer.parseInt(iterations));
} else {
setNumIterations(m_NumIterations);
}
iterations = Utils.getOption('B', options);
if (iterations.length() != 0) {
setBinaryWord(Boolean.parseBoolean(iterations));
} else {
setBinaryWord(m_BinaryWord);
}
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
String[] options = new String[4];
int current = 0;
options[current++] = "-I";
options[current++] = "" + getNumIterations();
options[current++] = "-B";
options[current++] = "" + getBinaryWord();
return options;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numIterationsTipText() {
return "The number of iterations that the classifier will scan the training data";
}
/**
* Sets the number of iterations to be performed
*/
public void setNumIterations(int numIterations) {
m_NumIterations = numIterations;
}
/**
* Gets the number of iterations to be performed
*
* @return the iterations to be performed
*/
public int getNumIterations() {
return m_NumIterations;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String binaryWordTipText() {
return " whether ingore the frequency information in data";
}
/**
* Sets whether use binary text representation
*/
public void setBinaryWord(boolean val) {
m_BinaryWord = val;
}
/**
* Gets whether use binary text representation
*
* @return whether use binary text representation
*/
public boolean getBinaryWord() {
return m_BinaryWord;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return "$Revision: 1.0";
}
public class DNBBinary implements Serializable {
/** The number of iterations. */
private double[][] m_perWordPerClass;
private double[] m_wordsPerClass;
int m_classIndex = -1;
private double[] m_classDistribution;
/** number of unique words */
private int m_numAttributes;
//set the target class
private int m_targetClass = -1;
private double m_WordLaplace=1;
private double[] m_coefficient;
private double m_classRatio;
private double m_wordRatio;
public void initClassifier(Instances instances) throws Exception {
m_numAttributes = instances.numAttributes();
m_perWordPerClass = new double[2][m_numAttributes];
m_coefficient = new double[m_numAttributes];
m_wordsPerClass = new double[2];
m_classDistribution = new double[2];
m_WordLaplace = Math.log(m_numAttributes);
m_classIndex = instances.classIndex();
//Laplace
for (int c = 0; c < 2; c++) {
m_classDistribution[c] = 1;
m_wordsPerClass[c] = m_WordLaplace * m_numAttributes;
java.util.Arrays.fill(m_perWordPerClass[c], m_WordLaplace);
}
}
public void updateClassifier(Instance ins) throws
Exception {
//c=0 is 1, which is the target class, and c=1 is the rest
int classIndex = 0;
if (ins.value(ins.classIndex()) != m_targetClass)
classIndex = 1;
double prob = 1 -
distributionForInstance(ins)[classIndex];
double weight = prob * ins.weight();
for (int a = 0; a < ins.numValues(); a++) {
if (ins.index(a) != m_classIndex )
{
if (m_BinaryWord) {
if (ins.valueSparse(a) > 0) {
m_wordsPerClass[classIndex] +=
weight;
m_perWordPerClass[classIndex][ins.
index(a)] +=
weight;
}
} else {
double t = ins.valueSparse(a) * weight;
m_wordsPerClass[classIndex] += t;
m_perWordPerClass[classIndex][ins.index(a)] += t;
}
//update coefficient
m_coefficient[ins.index(a)] = Math.log(m_perWordPerClass[0][
ins.index(a)] /
m_perWordPerClass[1][ins.index(a)]);
}
}
m_wordRatio = Math.log(m_wordsPerClass[0] / m_wordsPerClass[1]);
m_classDistribution[classIndex] += weight;
m_classRatio = Math.log(m_classDistribution[0] /
m_classDistribution[1]);
}
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return predicted class probability distribution
* @exception Exception if there is a problem generating the prediction
*/
public double getLogProbForTargetClass(Instance ins) throws Exception {
double probLog = m_classRatio;
for (int a = 0; a < ins.numValues(); a++) {
if (ins.index(a) != m_classIndex )
{
if (m_BinaryWord) {
if (ins.valueSparse(a) > 0) {
probLog += m_coefficient[ins.index(a)] -
m_wordRatio;
}
} else {
probLog += ins.valueSparse(a) *
(m_coefficient[ins.index(a)] - m_wordRatio);
}
}
}
return probLog;
}
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param instance the instance to be classified
* @return predicted class probability distribution
* @exception Exception if there is a problem generating the prediction
*/
public double[] distributionForInstance(Instance instance) throws
Exception {
double[] probOfClassGivenDoc = new double[2];
double ratio=getLogProbForTargetClass(instance);
if (ratio > 709)
probOfClassGivenDoc[0]=1;
else
{
ratio = Math.exp(ratio);
probOfClassGivenDoc[0]=ratio / (1 + ratio);
}
probOfClassGivenDoc[1] = 1 - probOfClassGivenDoc[0];
return probOfClassGivenDoc;
}
/**
* Returns a string representation of the classifier.
*
* @return a string representation of the classifier
*/
public String toString() {
// StringBuffer result = new StringBuffer("The cofficiency of a naive Bayes classifier, can be considered as the discriminative power of a word\n--------------------------------------\n");
StringBuffer result = new StringBuffer();
result.append("\n");
TreeMap sort=new TreeMap();
double[] absCoeff=new double[m_numAttributes];
for(int w = 0; w<m_numAttributes; w++)
{
if(w==m_headerInfo.classIndex())continue;
String val= m_headerInfo.attribute(w).name()+": "+m_coefficient[w];
sort.put((-1)*Math.abs(m_coefficient[w]),val);
}
Iterator it=sort.values().iterator();
while(it.hasNext())
{
result.append((String)it.next());
result.append("\n");
}
return result.toString();
}
/**
* Sets the Target Class
*/
public void setTargetClass(int targetClass) {
m_targetClass = targetClass;
}
/**
* Gets the Target Class
*
* @return the Target Class Index
*/
public int getTargetClass() {
return m_targetClass;
}
}
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String[] argv) {
DMNBtext c = new DMNBtext();
runClassifier(c, argv);
}
}