Package org.jblas

Source Code of org.jblas.ComplexDoubleMatrix

// --- BEGIN LICENSE BLOCK ---
/*
* Copyright (c) 2009, Mikio L. Braun
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
*     * Redistributions of source code must retain the above copyright
*       notice, this list of conditions and the following disclaimer.
*
*     * Redistributions in binary form must reproduce the above
*       copyright notice, this list of conditions and the following
*       disclaimer in the documentation and/or other materials provided
*       with the distribution.
*
*     * Neither the name of the Technische Universität Berlin nor the
*       names of its contributors may be used to endorse or promote
*       products derived from this software without specific prior
*       written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// --- END LICENSE BLOCK ---

package org.jblas;

import org.jblas.exceptions.SizeException;

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Arrays;

public class ComplexDoubleMatrix {
 
  public int rows;
  public int columns;
  public int length;
  public double[] data = null; // rows are contiguous

  /**************************************************************************
   *
   * Constructors and factory functions
   *
   **************************************************************************/

  /**
   * Create a new matrix with <i>newRows</i> rows, <i>newColumns</i> columns
   * using <i>newData></i> as the data.
   */
  public ComplexDoubleMatrix(int newRows, int newColumns, double... newData) {
    rows = newRows;
    columns = newColumns;
    length = rows * columns;

    if (newData.length != 2 * newRows * newColumns)
      throw new IllegalArgumentException(
          "Passed data must match matrix dimensions.");
                data = newData;
  }
 
  /**
   * Creates a new <i>n</i> times <i>m</i> <tt>ComplexDoubleMatrix</tt>.
   * @param newRows the number of rows (<i>n</i>) of the new matrix.
   * @param newColumns the number of columns (<i>m</i>) of the new matrix.
   */
  public ComplexDoubleMatrix(int newRows, int newColumns) {
    this(newRows, newColumns, new double[2 * newRows * newColumns]);
  }
 
  /**
   * Creates a new <tt>ComplexDoubleMatrix</tt> of size 0 times 0.
   */
  public ComplexDoubleMatrix() {
    this(0, 0, null);
  }

  /**
   * Create a Matrix of length <tt>len</tt>. By default, this creates a row vector.
   * @param len
   */
  public ComplexDoubleMatrix(int len) {
    this(len, 1, new double[2 * len]);
  }
 
  public ComplexDoubleMatrix(double[] newData) {
    this(newData.length/2, 1, newData);
  }

  public ComplexDoubleMatrix(ComplexDouble[] newData) {
    this(newData.length);
       
    for (int i = 0; i < newData.length; i++)
      put(i, newData[i]);
  }
   
       
  /** Construct a complex matrix from a real matrix. */
  public ComplexDoubleMatrix(DoubleMatrix m) {
    this(m.rows, m.columns);

    NativeBlas.dcopy(m.length, m.data, 0, 1, data, 0, 2);
  }

  /** Construct a complex matrix from separate real and imaginary parts. Either
   * part can be set to null in which case it will be ignored.
   */
  public ComplexDoubleMatrix(DoubleMatrix real, DoubleMatrix imag) {
      this(real.rows, real.columns);
      real.assertSameSize(imag);

      if (real != null)
          NativeBlas.dcopy(length, real.data, 0, 1, data, 0, 2);
      if (imag != null)
          NativeBlas.dcopy(length, imag.data, 0, 1, data, 1, 2);
  }
       
        /**
   * Creates a new matrix by reading it from a file.
   * @param filename the path and name of the file to read the matrix from
   * @throws IOException
   */
  public ComplexDoubleMatrix(String filename) throws IOException {
    load(filename);
  }
 
  /**
   * Creates a new <i>n</i> times <i>m</i> <tt>ComplexDoubleMatrix</tt> from
   * the given <i>n</i> times <i>m</i> 2D data array. The first dimension of the array makes the
   * rows (<i>n</i>) and the second dimension the columns (<i>m</i>). For example, the
   * given code <br/><br/>
   * <code>new ComplexDoubleMatrix(new double[][]{{1d, 2d, 3d}, {4d, 5d, 6d}, {7d, 8d, 9d}}).print();</code><br/><br/>
   * will constructs the following matrix:
   * <pre>
   * 1.0  2.0  3.0
   * 4.0  5.0  6.0
   * 7.0  8.0  9.0
   * </pre>.
   * @param data <i>n</i> times <i>m</i> data array
   */
  public ComplexDoubleMatrix(double[][] data) {
    this(data.length, data[0].length);
           
    for (int r = 0; r < rows; r++)
      assert(data[r].length == columns);
   
    for (int r = 0; r < rows; r++)
      for (int c = 0; c < columns; c++)
        put(r, c, data[r][c]);
  }
 
  /**
   * Creates a new matrix in which all values are equal 0.
   * @param rows number of rows
   * @param columns number of columns
   * @return new matrix
   */
  public static ComplexDoubleMatrix zeros(int rows, int columns) {
    return new ComplexDoubleMatrix(rows, columns);
  }
 
  public static ComplexDoubleMatrix zeros(int length) {
    return zeros(length, 1);
  }

  /**
   * Creates a new matrix in which all values are equal 1.
   * @param rows number of rows
   * @param columns number of columns
   * @return new matrix
   */
  public static ComplexDoubleMatrix ones(int rows, int columns) {
    ComplexDoubleMatrix m = new ComplexDoubleMatrix(rows, columns);
   
    for (int i = 0; i < rows * columns; i++)
      m.put(i, 1.0);
   
    return m;
  }
 
  public static ComplexDoubleMatrix ones(int length) {
    return ones(length, 1);
  }
 
  /**
   * Creates a new matrix where the values of the given vector are the diagonal values of
   * the matrix.
   * @param x the diagonal values
   * @return new matrix
   */
  public static ComplexDoubleMatrix diag(ComplexDoubleMatrix x) {
    ComplexDoubleMatrix m = new ComplexDoubleMatrix(x.length, x.length);
   
    for (int i = 0; i < x.length; i++)
      m.put(i, i, x.get(i));
   
    return m;
  }

  /**
   * Construct a matrix of arbitrary shape and set the diagonal according
   * to a passed vector.
   *
   * length of needs to be smaller than rows or columns.
   *
   * @param x vector to fill the diagonal with
   * @param rows number of rows of the resulting matrix
   * @param columns number of columns of the resulting matrix
   * @return a matrix with dimensions rows * columns whose diagonal elements are filled by x
   */
  public static ComplexDoubleMatrix diag(ComplexDoubleMatrix x, int rows, int columns) {
    if (x.length > rows || x.length > columns) {
      throw new SizeException("Length of diagonal matrix must be larger than both rows and columns.");
    }
   
    ComplexDoubleMatrix m = new ComplexDoubleMatrix(rows, columns);

    for (int i = 0; i < x.length; i++)
      m.put(i, i, x.get(i));

    return m;
  }
 
  /**
   * Create a 1 * 1 - matrix. For many operations, this matrix functions like a
   * normal double
   * @param s value of the matrix
   * @return the constructed ComplexDoubleMatrix
   */
  public static ComplexDoubleMatrix scalar(double s) {
    ComplexDoubleMatrix m = new ComplexDoubleMatrix(1, 1);
    m.put(0, 0, s);
    return m;
  }
 
  /** Test whether a matrix is scalar */
  public boolean isScalar() {
    return length == 1;
  }
 
  /** Return the first element of the matrix */
  public ComplexDouble scalar() {
    return get(0);
  }
 
  public static ComplexDoubleMatrix concatHorizontally(ComplexDoubleMatrix A, ComplexDoubleMatrix B) {
    if (A.rows != B.rows)
      throw new SizeException("Matrices don't have same number of rows.");
   
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(A.rows, A.columns + B.columns);
    SimpleBlas.copy(A, result);
    NativeBlas.zcopy(B.length, B.data, 0, 1, result.data, A.length, 1);
    return result;
  }

  public static ComplexDoubleMatrix concatVertically(ComplexDoubleMatrix A, ComplexDoubleMatrix B) {
    if (A.columns != B.columns)
      throw new SizeException("Matrices don't have same number of columns.");
   
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(A.rows + B.rows, A.columns);

    for (int i = 0; i < A.columns; i++) {
      NativeBlas.zcopy(A.rows, A.data, A.index(0, i), 1, result.data, result.index(0, i), 1);
      NativeBlas.zcopy(B.rows, B.data, B.index(0, i), 1, result.data, result.index(A.rows, i), 1);
    }
   
    return result;
  }
 
  /**************************************************************************
   * Working with slices (Man! 30+ methods just to make this a bit flexible...)
   */

  public ComplexDoubleMatrix get(int[] indices) {
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(indices.length);
   
    for (int i = 0; i < indices.length; i++)
      result.put(i, get(indices[i]));
   
    return result;
  }
 
  public ComplexDoubleMatrix get(int r, int[] indices) {
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(1, indices.length);
   
    for (int i = 0; i < indices.length; i++)
      result.put(i, get(r, indices[i]));
   
    return result;
  }
 
  public ComplexDoubleMatrix get(int[] indices, int c) {
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(indices.length, 1);
   
    for (int i = 0; i < indices.length; i++)
      result.put(i, get(indices[i], c));
   
    return result;
  }
 
  public ComplexDoubleMatrix get(int[] rindices, int[] cindices) {
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(rindices.length, cindices.length);
   
    for (int i = 0; i < rindices.length; i++)
      for (int j = 0; j < cindices.length; j++)
        result.put(i, j, get(rindices[i], cindices[j]));
   
    return result;
  }
 
  public ComplexDoubleMatrix get(ComplexDoubleMatrix indices) {
    return get(indices.findIndices());
  }

  public ComplexDoubleMatrix get(int r, ComplexDoubleMatrix indices) {
    return get(r, indices.findIndices());
  }
 
  public ComplexDoubleMatrix get(ComplexDoubleMatrix indices, int c) {
    return get(indices.findIndices(), c);
  }

  public ComplexDoubleMatrix get(ComplexDoubleMatrix rindices, ComplexDoubleMatrix cindices) {
    return get(rindices.findIndices(), cindices.findIndices());
  }
 
  private void checkLength(int l) {
    if (length != l)
      throw new SizeException("Matrix does not have the necessary length (" + length + " != " + l + ").");
  }

  private void checkRows(int r) {
    if (rows != r)
      throw new SizeException("Matrix does not have the necessary length (" + length + " != " + r + ").");
  }
 
  private void checkColumns(int c) {
    if (columns != c)
      throw new SizeException("Matrix does not have the necessary length (" + length + " != " + c + ").");
  }

  public ComplexDoubleMatrix put(int[] indices, ComplexDoubleMatrix x) {
    if (x.isScalar())
      return put(indices, x.scalar());
    x.checkLength(indices.length);
   
    for (int i = 0; i < indices.length; i++)
      put(indices[i], x.get(i));
   
    return this;
  }
 
  public ComplexDoubleMatrix put(int r, int[] indices, ComplexDoubleMatrix x) {
    if (x.isScalar())
      return put(r, indices, x.scalar());
    x.checkColumns(indices.length);
   
    for (int i = 0; i < indices.length; i++)
      put(r, indices[i], x.get(i));
   
    return this;
  }
 
  public ComplexDoubleMatrix put(int[] indices, int c, ComplexDoubleMatrix x) {
    if (x.isScalar())
      return put(indices, c, x.scalar());   
    x.checkRows(indices.length);
   
    for (int i = 0; i < indices.length; i++)
      put(indices[i], c, x.get(i));
   
    return this;
  }
 
  public ComplexDoubleMatrix put(int[] rindices, int[] cindices, ComplexDoubleMatrix x) {
    if (x.isScalar())
      return put(rindices, cindices, x.scalar());   
    x.checkRows(rindices.length);
    x.checkColumns(cindices.length);
   
    for (int i = 0; i < rindices.length; i++)
      for (int j = 0; j < cindices.length; j++)
        put(rindices[i], cindices[j], x.get(i,j));
   
    return this;
  }
 
  public ComplexDoubleMatrix put(int[] indices, double v) {
    for (int i = 0; i < indices.length; i++)
      put(indices[i], v);
   
    return this;
  }

  public ComplexDoubleMatrix putReal(int[] indices, double v) {
    return put(indices, v);
  }

  public ComplexDoubleMatrix putImag(int[] indices, double v) {
    for (int i = 0; i < indices.length; i++)
      putImag(indices[i], v);
   
    return this;
  }

  public ComplexDoubleMatrix put(int[] indices, ComplexDouble v) {
    for (int i = 0; i < indices.length; i++)
      put(indices[i], v);
   
    return this;
  }

  public ComplexDoubleMatrix put(int r, int[] indices, double v) {
    for (int i = 0; i < indices.length; i++)
      put(r, indices[i], v);
   
    return this;
  }

  public ComplexDoubleMatrix putReal(int r, int[] indices, double v) {
    return put(r, indices, v);
  }

  public ComplexDoubleMatrix putImag(int r, int[] indices, double v) {
    for (int i = 0; i < indices.length; i++)
      putImag(r, indices[i], v);
   
    return this;
  }

  public ComplexDoubleMatrix put(int r, int[] indices, ComplexDouble v) {
    for (int i = 0; i < indices.length; i++)
      put(r, indices[i], v);
   
    return this;
  }

  public ComplexDoubleMatrix put(int[] indices, int c, double v) {
    for (int i = 0; i < indices.length; i++)
      put(indices[i], c, v);
   
    return this;
  }
 
  public ComplexDoubleMatrix putReal(int[] indices, int c, double v) {
    return put(indices, c, v);
  }
 
  public ComplexDoubleMatrix putImag(int[] indices, int c, double v) {
    for (int i = 0; i < indices.length; i++)
      putImag(indices[i], c, v);
   
    return this;
  }
 
  public ComplexDoubleMatrix put(int[] indices, int c, ComplexDouble v) {
    for (int i = 0; i < indices.length; i++)
      put(indices[i], c, v);
   
    return this;
   }
 
  public ComplexDoubleMatrix put(int[] rindices, int[] cindices, double v) {
    for (int i = 0; i < rindices.length; i++)
      for (int j = 0; j < cindices.length; j++)
        put(rindices[i], cindices[j], v);
   
    return this;
  }
 
  public ComplexDoubleMatrix putReal(int[] rindices, int[] cindices, double v) {
    return put(rindices, cindices, v);
  }
 
  public ComplexDoubleMatrix putImag(int[] rindices, int[] cindices, double v) {
    for (int i = 0; i < rindices.length; i++)
      for (int j = 0; j < cindices.length; j++)
        put(rindices[i], cindices[j], v);
   
    return this;
  }

  public ComplexDoubleMatrix put(int[] rindices, int[] cindices, ComplexDouble v) {
    for (int i = 0; i < rindices.length; i++)
      for (int j = 0; j < cindices.length; j++)
        put(rindices[i], cindices[j], v);
   
    return this;
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix indices, ComplexDoubleMatrix v) {
    return put(indices.findIndices(), v);
  }

  public ComplexDoubleMatrix put(int r, ComplexDoubleMatrix indices, ComplexDoubleMatrix v) {
    return put(r, indices.findIndices(), v);
  }
 
  public ComplexDoubleMatrix put(ComplexDoubleMatrix indices, int c, ComplexDoubleMatrix v) {
    return put(indices.findIndices(), c, v);
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix rindices, ComplexDoubleMatrix cindices, ComplexDoubleMatrix v) {
    return put(rindices.findIndices(), cindices.findIndices(), v);
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix indices, double v) {
    return put(indices.findIndices(), v);
  }

  public ComplexDoubleMatrix putReal(ComplexDoubleMatrix indices, double v) {
    return put(indices, v);
  }

  public ComplexDoubleMatrix putImag(ComplexDoubleMatrix indices, double v) {
    return putImag(indices.findIndices(), v);
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix indices, ComplexDouble v) {
    return put(indices.findIndices(), v);
  }
 
  public ComplexDoubleMatrix put(int r, ComplexDoubleMatrix indices, double v) {
    return put(r, indices.findIndices(), v);
  }
 
  public ComplexDoubleMatrix putReal(int r, ComplexDoubleMatrix indices, double v) {
    return put(r, indices, v);
  }

  public ComplexDoubleMatrix putImag(int r, ComplexDoubleMatrix indices, double v) {
    return putImag(r, indices.findIndices(), v);
  }

  public ComplexDoubleMatrix put(int r, ComplexDoubleMatrix indices, ComplexDouble v) {
    return put(r, indices.findIndices(), v);
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix indices, int c, double v) {
    return put(indices.findIndices(), c, v);
  }

  public ComplexDoubleMatrix putReal(ComplexDoubleMatrix indices, int c, double v) {
    return put(indices, c, v);
  }

  public ComplexDoubleMatrix putImag(ComplexDoubleMatrix indices, int c, double v) {
    return putImag(indices.findIndices(), c, v);
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix indices, int c, ComplexDouble v) {
    return put(indices.findIndices(), c, v);
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix rindices, ComplexDoubleMatrix cindices, double v) {
    return put(rindices.findIndices(), cindices.findIndices(), v);
  }

  public ComplexDoubleMatrix putReal(ComplexDoubleMatrix rindices, ComplexDoubleMatrix cindices, double v) {
    return putReal(rindices.findIndices(), cindices.findIndices(), v);
  }

  public ComplexDoubleMatrix putImag(ComplexDoubleMatrix rindices, ComplexDoubleMatrix cindices, double v) {
    return putImag(rindices.findIndices(), cindices.findIndices(), v);
  }

  public ComplexDoubleMatrix put(ComplexDoubleMatrix rindices, ComplexDoubleMatrix cindices, ComplexDouble v) {
    return put(rindices.findIndices(), cindices.findIndices(), v);
  }

 
  public int[] findIndices() {
    int len = 0;
    for (int i = 0; i < length; i++)
      if (!get(i).isZero())
        len++;
   
    int[] indices = new int[len];
    int c = 0;
   
    for (int i = 0; i < length; i++)
      if (!get(i).isZero())
        indices[c++] = i;
   
    return indices;
  }
 
  /**************************************************************************
   * Basic operations (copying, resizing, element access)
   */
 
  /** Return transposed copy of this matrix */
  public ComplexDoubleMatrix transpose() {
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(columns, rows);

                ComplexDouble c = new ComplexDouble(0);

    for (int i = 0; i < rows; i++)
      for (int j = 0; j < columns; j++)
        result.put(j, i, get(i, j, c));
   
    return result;
  }

        public ComplexDoubleMatrix hermitian() {
            ComplexDoubleMatrix result = new ComplexDoubleMatrix(columns, rows);

            ComplexDouble c = new ComplexDouble(0);

            for (int i = 0; i < rows; i++)
                for (int j = 0; j < columns; j++)
                    result.put(j, i, get(i, j, c).conji());
            return result;
        }

        /**
         * Compute complex conjugate (in-place).
         */
        public ComplexDoubleMatrix conji() {
            ComplexDouble c = new ComplexDouble(0.0);
            for (int i = 0; i < length; i++)
                put(i, get(i, c).conji());
            return this;
        }

        /**
         * Compute complex conjugate.
         */
        public ComplexDoubleMatrix conj() {
            return dup().conji();
        }

   
  /** Compare two matrices.
   * @param o Object to compare to
   * @return true if and only if other is also a ComplexDoubleMatrix which has the same size and the
   * maximal absolute difference in matrix elements is smaller thatn 1e-6.  */
  public boolean equals(Object o) {
    if (!(o instanceof ComplexDoubleMatrix))
      return false;

    ComplexDoubleMatrix other = (ComplexDoubleMatrix) o;

    if (!sameSize(other))
      return false;

    return Arrays.equals(data, other.data);
  }
 
  public int hashCode() {
    return rows ^ columns ^ Arrays.hashCode(data);
  }

 
  /** Resize the matrix. All elements will be set to zero. */
  public void resize(int newRows, int newColumns) {
    rows = newRows;
    columns = newColumns;
    length = newRows * newColumns;
    data = new double[2 * rows * columns];
  }

 
  /** Reshape the matrix. Number of elements must not change. */
  public ComplexDoubleMatrix reshape(int newRows, int newColumns) {
    if (length != newRows * newColumns)
      throw new IllegalArgumentException(
          "Number of elements must not change.");

    rows = newRows;
    columns = newColumns;
   
    return this;
  }

  /** Checks whether two matrices have the same size. */
  public boolean sameSize(ComplexDoubleMatrix a) {
    return rows == a.rows && columns == a.columns;
  }

  /**
   * Assert that two matrices have the same size.
   *
   * @param a the other matrix
   * @throws SizeException if matrix sizes don't match.
   * */
  public void assertSameSize(ComplexDoubleMatrix a) {
    if (!sameSize(a))
      throw new SizeException("Matrices must have the same size.");
  }
 
  /**
   * Check whether this can be multiplied with a.
   *
   * @param a right-hand-side of the multiplication.
   * @return true iff <tt>this.columns == a.rows</tt>
   */
  public boolean multipliesWith(ComplexDoubleMatrix a) {
    return columns == a.rows;
  }
 
  public void assertMultipliesWith(ComplexDoubleMatrix a) {
    if (!multipliesWith(a))
      throw new SizeException("Number of columns of left matrix must be equal to number of rows of right matrix.");
  }
 
  public boolean sameLength(ComplexDoubleMatrix a) {
    return length == a.length;
  }
 
  public void assertSameLength(ComplexDoubleMatrix a) {
    if (!sameLength(a))
      throw new SizeException("Matrices must have same length (is: " + length + " and " + a.length + ")");
  }
 
  /** Copy ComplexDoubleMatrix a to this. this a is resized if necessary. */
  public ComplexDoubleMatrix copy(ComplexDoubleMatrix a) {
    if (!sameSize(a))
      resize(a.rows, a.columns);
   
    SimpleBlas.copy(a, this);
    return a;
  }
 
  /** Returns a duplicate of this matrix. Geometry is the same (including offsets, transpose, etc.),
   * but the buffer is not shared.
   */
  public ComplexDoubleMatrix dup() {
    ComplexDoubleMatrix out = new ComplexDoubleMatrix(rows, columns);

                JavaBlas.rcopy(2*length, data, 0, 1, out.data, 0, 1);
   
    return out;
  }
 
  public ComplexDoubleMatrix swapColumns(int i, int j) {
    NativeBlas.zswap(rows, data, index(0, i), 1, data, index(0, j), 1);
    return this;
  }
 
  public ComplexDoubleMatrix swapRows(int i, int j) {
    NativeBlas.zswap(columns, data, index(i, 0), rows, data, index(j, 0), rows);
    return this;
  }
   
  /** Set matrix element */
  public ComplexDoubleMatrix put(int rowIndex, int columnIndex, double value) {
    data[2*index(rowIndex, columnIndex)] =  value;
    return this;
  }

  public ComplexDoubleMatrix put(int rowIndex, int columnIndex, double realValue, double complexValue) {
    data[2*index(rowIndex, columnIndex)] =  realValue;
    data[2*index(rowIndex, columnIndex)+1] =  complexValue;
    return this;
  }

        public ComplexDoubleMatrix put(int rowIndex, int columnIndex, ComplexDouble value) {
    int i = 2*index(rowIndex, columnIndex);
    data[i] = value.real(); data[i+1] = value.imag();
    return this;
  }

  public ComplexDoubleMatrix putReal(int rowIndex, int columnIndex, double value) {
    data[2*index(rowIndex, columnIndex)] = value;
    return this;
  }

  public ComplexDoubleMatrix putImag(int rowIndex, int columnIndex, double value) {
    data[2*index(rowIndex, columnIndex)+1] = value;
    return this;
  }
 
  /** Retrieve matrix element */
  public ComplexDouble get(int rowIndex, int columnIndex) {
            int i = 2*index(rowIndex, columnIndex);
            return new ComplexDouble(data[i], data[i+1]);
  }

        /** Get matrix element, passing the variable to store the result. */
        public ComplexDouble get(int rowIndex, int columnIndex, ComplexDouble result) {
            return get(index(rowIndex, columnIndex), result);
        }
 
  public DoubleMatrix getReal() {
    DoubleMatrix result = new DoubleMatrix(rows, columns);
   
    NativeBlas.dcopy(length, data, 0, 2, result.data, 0, 1);
   
    return result;
  }

  /** Get index of an element */
  public int index(int rowIndex, int columnIndex) {
    return rows * columnIndex + rowIndex;
  }

  /** Compute the row index of a linear index. */
  public int indexRows(int i) {
    return i - indexColumns(i) * rows;
  }

  /** Compute the column index of a linear index. */
  public int indexColumns(int i) {
    return i / rows;
  }


  public ComplexDouble get(int i) {
    return new ComplexDouble(data[i * 2], data[i * 2 + 1]);
  }
 
        public ComplexDouble get(int i, ComplexDouble result) {
            return result.set(data[i * 2], data[i*2+1]);
        }
       
  public double getReal(int i) {
    return data[2*i];
  }
 
  public double getImag(int i) {
    return data[2*i + 1];
  }

  public ComplexDoubleMatrix put(int i, double v) {
    data[2*i] = v;
    return this;
  }

        public ComplexDoubleMatrix put(int i, double r, double c) {
            data[2*i] = r;
            data[2*i+1] = c;
            return this;
        }
 
  public ComplexDoubleMatrix put(int i, ComplexDouble v) {
    data[2*i] = v.real();
    data[2*i+1] = v.imag();
    return this;
  }
 
  public ComplexDoubleMatrix putReal(int i, double v) {
    return put(i, v);
  }
 
  public ComplexDoubleMatrix putImag(int i, double v) {
    data[2*i+1] = v;
    return this;
  }

  public int getRows() {
    return rows;
  }
 
  public int getColumns() {
    return columns;
  }
 
  public int getLength() {
    return length;
  }
 
  /** Checks whether the matrix is empty. */
  public boolean isEmpty() {
    return columns == 0 || rows == 0;
  }
 
  /** Checks whether the matrix is square. */
  public boolean isSquare() {
    return columns == rows;
  }
 
  public void assertSquare() {
    if (!isSquare())
      throw new SizeException("Matrix must be square!");
  }
 
  /** Checks whether the matrix is a vector. */
  public boolean isVector() {
    return columns == 1 || rows == 1;
  }
 
  public boolean isRowVector() {
    return columns == 1;
  }
 
  public boolean isColumnVector() {
    return rows == 1;
  }
   
        /** Get diagonal of the matrix. */
  public ComplexDoubleMatrix diag() {
    ComplexDoubleMatrix d = new ComplexDoubleMatrix(rows);
    NativeBlas.zcopy(rows, data, 0, rows + 1, d.data, 0, 1);
    return d;
  }
       
        /** Get real part of the matrix. */
        public DoubleMatrix real() {
            DoubleMatrix result = new DoubleMatrix(rows, columns);
            NativeBlas.dcopy(length, data, 0, 2, result.data, 0, 1);
            return result;
        }
       
        /** Get imaginary part of the matrix. */
        public DoubleMatrix imag() {
            DoubleMatrix result = new DoubleMatrix(rows, columns);
            NativeBlas.dcopy(length, data, 1, 2, result.data, 0, 1);
            return result;           
        }

 
  /**
   * Pretty-print this matrix to <tt>System.out</tt>.
   * */
  public void print() {
    System.out.println(toString());
  }

  /**
   * Generate string representation of this matrix
   * (multi-line).
   * */
  public String toString() {
    StringBuilder s = new StringBuilder();

    s.append("[");
   
    for (int i = 0; i < rows; i++) {
      for (int j = 0; j < columns; j++) {
        s.append(get(i, j));
        if (j < columns - 1)
          s.append(", ");
      }
      if (i < rows - 1)
        s.append("; ");
    }

    s.append("]");
   
    return s.toString();
  }

  public double[] toDoubleArray() {
    return data.clone();
  }
 
  public ComplexDouble[] toArray() {
    ComplexDouble[] array = new ComplexDouble[length];
   
    for (int i = 0; i < length; i++)
      array[i] = get(i);
   
    return array;   
  }
 
  public ComplexDouble[][] toArray2() {
    ComplexDouble[][] array = new ComplexDouble[rows][columns];
   
    for (int r = 0; r < rows; r++)
      for (int c = 0; c < columns; c++)
        array[r][c] = get(r, c);
       
    return array;
  }
 
  public boolean[] toBooleanArray() {
    boolean[] array = new boolean[length];
   
    for (int i = 0; i < length; i++)
      array[i] = !get(i).isZero();
   
    return array;
  }
 
  public boolean[][] toBooleanArray2() {
    boolean[][] array = new boolean[rows][columns];
   
    for (int r = 0; r < rows; r++)
      for (int c = 0; c < columns; c++)
        array[r][c] = !get(r, c).isZero();
       
    return array;
  }

  /**************************************************************************
   * Arithmetic Operations
   */

  /**
   * Ensures that the result vector has the same length as this. If not,
   * resizing result is tried, which fails if result == this or result == other.
   */
  private void ensureResultLength(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    if (!sameLength(result)) {
      if (result == this || result == other)
        throw new SizeException("Cannot resize result matrix because it is used in-place.");
      result.resize(rows, columns);
    }
  }

  /** Add two matrices. */
  public ComplexDoubleMatrix addi(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    if (other.isScalar())
      return addi(other.scalar(), result);
   
    assertSameLength(other);
    ensureResultLength(other, result);
   
    if (result == this)
      SimpleBlas.axpy(ComplexDouble.UNIT, other, result);
    else if (result == other)
      SimpleBlas.axpy(ComplexDouble.UNIT, this, result);
    else {
      SimpleBlas.copy(this, result);
      SimpleBlas.axpy(ComplexDouble.UNIT, other, result);
    }

    return result;
  }
 
  /** Add a scalar to a matrix. */
  public ComplexDoubleMatrix addi(ComplexDouble v, ComplexDoubleMatrix result) {
    ensureResultLength(null, result);
   
    for (int i = 0; i < length; i++)
      result.put(i, get(i).add(v));
    return result;
  }
 
  public ComplexDoubleMatrix addi(double v, ComplexDoubleMatrix result) {
    return addi(new ComplexDouble(v), result);
  }

  /** Subtract two matrices. */
  public ComplexDoubleMatrix subi(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    if (other.isScalar())
      return subi(other.scalar(), result);
   
    assertSameLength(other);
    ensureResultLength(other, result);
   
    if (result == this)
      SimpleBlas.axpy(ComplexDouble.NEG_UNIT, other, result);
    else if (result == other) {
      SimpleBlas.scal(ComplexDouble.NEG_UNIT, result);
      SimpleBlas.axpy(ComplexDouble.UNIT, this, result);
    }
    else {
      SimpleBlas.copy(this, result);
      SimpleBlas.axpy(ComplexDouble.NEG_UNIT, other, result);
    }
    return result;
  }
 
  /** Subtract a scalar from a matrix */
  public ComplexDoubleMatrix subi(ComplexDouble v, ComplexDoubleMatrix result) {
    ensureResultLength(null, result);
   
    for (int i = 0; i < length; i++)
      result.put(i, get(i).sub(v));
    return result;
  }
 
  public ComplexDoubleMatrix subi(double v, ComplexDoubleMatrix result) {
    return subi(new ComplexDouble(v), result);
  }

  /**
   * Subtract two matrices, but subtract first from second matrix, that is,
   * compute <em>result = other - this</em>.
   * */
  public ComplexDoubleMatrix rsubi(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    return other.subi(this, result);
  }
 
  /** Subtract a matrix from a scalar */
  public ComplexDoubleMatrix rsubi(ComplexDouble a, ComplexDoubleMatrix result) {
    ensureResultLength(null, result);
   
    for (int i = 0; i < length; i++)
      result.put(i, a.sub(get(i)));
    return result;
  }

  public ComplexDoubleMatrix rsubi(double a, ComplexDoubleMatrix result) {
    return rsubi(new ComplexDouble(a), result);
  }

  /** (Elementwise) Multiplication */
  public ComplexDoubleMatrix muli(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    if (other.isScalar())
      return muli(other.scalar(), result);
   
    assertSameLength(other);
    ensureResultLength(other, result);
   
                ComplexDouble c = new ComplexDouble(0.0);
                ComplexDouble d = new ComplexDouble(0.0);
               
    for (int i = 0; i < length; i++)
      result.put(i, get(i, c).muli(other.get(i, d)));
    return result;
  }
 
  /** (Elementwise) Multiplication with a scalar */
  public ComplexDoubleMatrix muli(ComplexDouble v, ComplexDoubleMatrix result) {
    ensureResultLength(null, result);
   
                ComplexDouble c = new ComplexDouble(0.0);
               
    for (int i = 0; i < length; i++)
      result.put(i, get(i, c).muli(v));
    return result;
  }

  public ComplexDoubleMatrix muli(double v, ComplexDoubleMatrix result) {
    return muli(new ComplexDouble(v), result);
  }

  /** Matrix-Matrix Multiplication */
  public ComplexDoubleMatrix mmuli(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    if (other.isScalar())
      return muli(other.scalar(), result);

    /* check sizes and resize if necessary */
    assertMultipliesWith(other);
    if (result.rows != rows || result.columns != other.columns) {
      if (result != this && result != other)
        result.resize(rows, other.columns);
      else
        throw new SizeException("Cannot resize result matrix because it is used in-place.");
    }
   
    if (result == this || result == other) {
      /* actually, blas cannot do multiplications in-place. Therefore, we will fake by
       * allocating a temporary object on the side and copy the result later.
       */
      ComplexDoubleMatrix temp = new ComplexDoubleMatrix(result.rows, result.columns);
      SimpleBlas.gemm(ComplexDouble.UNIT, this, other, ComplexDouble.ZERO, temp);
      SimpleBlas.copy(temp, result);
    }
    else {
      SimpleBlas.gemm(ComplexDouble.UNIT, this, other, ComplexDouble.ZERO, result);
    }   
    return result;
  }
 
  /** Matrix-Matrix Multiplication with a scalar (for symmetry, does the
   * same as muli(scalar)
   */
  public ComplexDoubleMatrix mmuli(ComplexDouble v, ComplexDoubleMatrix result) {
    return muli(v, result);
  }

  public ComplexDoubleMatrix mmuli(double v, ComplexDoubleMatrix result) {
    return muli(v, result);
  }
 
  /** (Elementwise) division */
  public ComplexDoubleMatrix divi(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    if (other.isScalar())
      return divi(other.scalar(), result);
   
    assertSameLength(other);
    ensureResultLength(other, result);
   
                ComplexDouble c1 = new ComplexDouble(0.0);
                ComplexDouble c2 = new ComplexDouble(0.0);
               
    for (int i = 0; i < length; i++)
      result.put(i, get(i, c1).divi(other.get(i, c2)));
    return result;
  }
   
  /** (Elementwise) division with a scalar */
  public ComplexDoubleMatrix divi(ComplexDouble a, ComplexDoubleMatrix result) {
    ensureResultLength(null, result);
   
                ComplexDouble c = new ComplexDouble(0.0);
               
    for (int i = 0; i < length; i++)
      result.put(i, get(i, c).divi(a));
    return result;
 

  public ComplexDoubleMatrix divi(double a, ComplexDoubleMatrix result) {
    return divi(new ComplexDouble(a), result);
  }

  /**
   * (Elementwise) division, with operands switched. Computes
   * <em>result = other / this</em>. */
  public ComplexDoubleMatrix rdivi(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
    if (other.isScalar())
      return divi(other.scalar(), result);
   
    assertSameLength(other);
    ensureResultLength(other, result);

                ComplexDouble c1 = new ComplexDouble(0.0);
                ComplexDouble c2 = new ComplexDouble(0.0);

    for (int i = 0; i < length; i++)
      result.put(i, other.get(i, c1).divi(get(i, c2)));
    return result;
  }
   
  /** (Elementwise) division with a scalar, with operands switched. Computes
   * <em>result = a / this</em>.*/
  public ComplexDoubleMatrix rdivi(ComplexDouble a, ComplexDoubleMatrix result) {
    ensureResultLength(null, result);

                ComplexDouble c1 = new ComplexDouble(0.0);
                ComplexDouble c2 = new ComplexDouble(0.0);

    for (int i = 0; i < length; i++) {
                    c1.copy(a);
                    result.put(i, c1.divi(get(i, c2)));                   
                }
    return result;
  }

  public ComplexDoubleMatrix rdivi(double a, ComplexDoubleMatrix result) {
    return rdivi(new ComplexDouble(a), result);
  }
 
  public ComplexDoubleMatrix negi() {
                ComplexDouble c = new ComplexDouble(0.0);
    for (int i = 0; i < length; i++)
      put(i, get(i, c).negi());
    return this;
  }
 
  public ComplexDoubleMatrix neg() {
    return dup().negi();
  }

  public ComplexDoubleMatrix noti() {
                ComplexDouble c = new ComplexDouble(0.0);
    for (int i = 0; i < length; i++)
      put(i, get(i, c).isZero() ? 1.0 : 0.0);
    return this;
  }
 
  public ComplexDoubleMatrix not() {
    return dup().noti();
  }
 
  public ComplexDoubleMatrix truthi() {
                ComplexDouble c = new ComplexDouble(0.0);
    for (int i = 0; i < length; i++)
      put(i, get(i, c).isZero() ? 0.0 : 1.0);
    return this;
  }
 
  public ComplexDoubleMatrix truth() {
    return dup().truthi();
  }

  /****************************************************************
   * Rank one-updates
   */
 
  /** Computes a rank-1-update A = A + alpha * x * y'. */
  public ComplexDoubleMatrix rankOneUpdate(ComplexDouble alpha, ComplexDoubleMatrix x, ComplexDoubleMatrix y) {
    if (rows != x.length)
      throw new SizeException("Vector x has wrong length (" + x.length + " != " + rows + ").");
    if (columns != y.length)
      throw new SizeException("Vector y has wrong length (" + x.length + " != " + columns + ").");     
   
    SimpleBlas.gerc(alpha, x, y, this);
    return this;
  }

  public ComplexDoubleMatrix rankOneUpdate(double alpha, ComplexDoubleMatrix x, ComplexDoubleMatrix y) {
    return rankOneUpdate(new ComplexDouble(alpha), x, y);
  }

  /** Computes a rank-1-update A = A + alpha * x * x'. */
  public ComplexDoubleMatrix rankOneUpdate(double alpha, ComplexDoubleMatrix x) {
    return rankOneUpdate(new ComplexDouble(alpha), x, x);
  }

  /** Computes a rank-1-update A = A + alpha * x * x'. */
  public ComplexDoubleMatrix rankOneUpdate(ComplexDouble alpha, ComplexDoubleMatrix x) {
    return rankOneUpdate(alpha, x, x);
  }

  /** Computes a rank-1-update A = A + x * x'. */
  public ComplexDoubleMatrix rankOneUpdate(ComplexDoubleMatrix x) {
    return rankOneUpdate(1.0, x, x);
  }

  /** Computes a rank-1-update A = A + x * y'. */
  public ComplexDoubleMatrix rankOneUpdate(ComplexDoubleMatrix x, ComplexDoubleMatrix y) {
    return rankOneUpdate(1.0, x, y);
  }

  /****************************************************************
   * Logical operations
   */
 
  public ComplexDouble sum() {
    ComplexDouble s = new ComplexDouble(0.0);
                ComplexDouble c = new ComplexDouble(0.0);
    for (int i = 0; i < length; i++)
      s.addi(get(i, c));
    return s;
  }
 
  public ComplexDouble mean() {
    return sum().div((double)length);
  }
 
  /** Computes this^T * other */
  public ComplexDouble dotc(ComplexDoubleMatrix other) {
    return SimpleBlas.dotc(this, other);
  }
 
  /** Computes this^H * other */
  public ComplexDouble dotu(ComplexDoubleMatrix other) {
    return SimpleBlas.dotu(this, other);
  }

  public double norm2() {
    return SimpleBlas.nrm2(this);
  }
 
  public double normmax() {
    int i = SimpleBlas.iamax(this);
    return get(i).abs();
  }

  public double norm1() {
    return SimpleBlas.asum(this);
  }
   
  /** Return a vector containing the sums of the columns (having number of columns many entries) */
  public ComplexDoubleMatrix columnSums() {
    ComplexDoubleMatrix v =
                        new ComplexDoubleMatrix(1, columns);

    for (int c = 0; c < columns; c++)
      v.put(c, getColumn(c).sum());

    return v;
  }

  public ComplexDoubleMatrix columnMeans() {
    return columnSums().divi(rows);
  }
 
  public ComplexDoubleMatrix rowSums() {
    ComplexDoubleMatrix v = new ComplexDoubleMatrix(rows);

    for (int r = 0; r < rows; r++)
      v.put(r, getRow(r).sum());

    return v;
  }

  public ComplexDoubleMatrix rowMeans() {
    return rowSums().divi(columns);
  }

  public ComplexDoubleMatrix getColumn(int c) {
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(rows, 1);
    NativeBlas.zcopy(rows, data, index(0, c), 1, result.data, 0, 1);
    return result;
  }
 
  public void putColumn(int c, ComplexDoubleMatrix v) {
    NativeBlas.zcopy(rows, v.data, 0, 1, data, index(0, c), 1);
  }

  public ComplexDoubleMatrix getRow(int r) {
    ComplexDoubleMatrix result = new ComplexDoubleMatrix(1, columns);
    NativeBlas.zcopy(columns, data, index(r, 0), rows, result.data, 0, 1);
    return result;
  }
 
  public void putRow(int r, ComplexDoubleMatrix v) {
    NativeBlas.zcopy(columns, v.data, 0, 1, data, index(r, 0), rows);
  }

  /**************************************************************************
   * Elementwise Functions
   */

  /** Add a row vector to all rows of the matrix */
  public void addRowVector(ComplexDoubleMatrix x) {
    for (int r = 0; r < rows; r++) {
      NativeBlas.zaxpy(columns, ComplexDouble.UNIT, x.data, 0, 1, data, index(r, 0), rows);
    }
  }

  /** Add a vector to all columns of the matrix */
  public void addColumnVector(ComplexDoubleMatrix x) {
    for (int c = 0; c < columns; c++) {
      NativeBlas.zaxpy(rows, ComplexDouble.UNIT, x.data, 0, 1, data, index(0, c), 1);
    }
  }

         /** Add a row vector to all rows of the matrix */
  public void subRowVector(ComplexDoubleMatrix x) {
    for (int r = 0; r < rows; r++) {
      NativeBlas.zaxpy(columns, ComplexDouble.NEG_UNIT, x.data, 0, 1, data, index(r, 0), rows);
    }
  }

  /** Add a vector to all columns of the matrix */
  public void subColumnVector(ComplexDoubleMatrix x) {
    for (int c = 0; c < columns; c++) {
      NativeBlas.zaxpy(rows, ComplexDouble.NEG_UNIT, x.data, 0, 1, data, index(0, c), 1);
    }
  }

  /**
   * Writes out this matrix to the given data stream.
   * @param dos the data output stream to write to.
   * @throws IOException
   */
  public void out(DataOutputStream dos) throws IOException {
    dos.writeUTF("double");
    dos.writeInt(columns);
    dos.writeInt(rows);
   
    dos.writeInt(data.length);
    for(int i=0; i < data.length;i++)
      dos.writeDouble(data[i]);
  }
 
  /**
   * Reads in a matrix from the given data stream. Note
   * that the old data of this matrix will be discarded.
   * @param dis the data input stream to read from.
   * @throws IOException
   */
  public void in(DataInputStream dis) throws IOException {
    if(!dis.readUTF().equals("double"))
      throw new IllegalStateException("The matrix in the specified file is not of the correct type!");
   
    this.columns  = dis.readInt();
    this.rows    = dis.readInt();

    final int MAX = dis.readInt();
    data = new double[MAX];
    for(int i=0; i < MAX;i++)
      data[i] = dis.readDouble();
 
 
  /**
   * Saves this matrix to the specified file.
   * @param filename the file to write the matrix in.
   * @throws IOException thrown on errors while writing the matrix to the file
   */
  public void save(String filename) throws IOException {
    DataOutputStream dos = new DataOutputStream(new FileOutputStream(filename, false));
    this.out(dos);
  }
 
  /**
   * Loads a matrix from a file into this matrix. Note that the old data
   * of this matrix will be discarded.
   * @param filename the file to read the matrix from
   * @throws IOException thrown on errors while reading the matrix
   */
  public void load(String filename) throws IOException {
    DataInputStream dis = new DataInputStream(new FileInputStream(filename));
    this.in(dis);
  }

  /****************************************************************
   * Autogenerated code
   */
 
  /***** Code for operators ***************************************/

  /* Overloads for the usual arithmetic operations */
  /*#
   def gen_overloads(base, result_rows, result_cols); <<-EOS
  public ComplexDoubleMatrix #{base}i(ComplexDoubleMatrix other) {
    return #{base}i(other, this);
  }
    
  public ComplexDoubleMatrix #{base}(ComplexDoubleMatrix other) {
      return #{base}i(other, new ComplexDoubleMatrix(#{result_rows}, #{result_cols}));
  }

  public ComplexDoubleMatrix #{base}i(ComplexDouble v) {
    return #{base}i(v, this);
  }
 
  public ComplexDoubleMatrix #{base}i(double v) {
    return #{base}i(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix #{base}(ComplexDouble v) {
    return #{base}i(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix #{base}(double v) {
    return #{base}i(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    
     EOS
    end
  #*/

  /* Generating code for logical operators. This not only generates the stubs
   * but really all of the code.
   */
 
  /*#
   def gen_compare(name, op); <<-EOS
   public ComplexDoubleMatrix #{name}i(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
      if (other.isScalar())
         return #{name}i(other.scalar(), result);
        
     assertSameLength(other);
     ensureResultLength(other, result);
    
                ComplexDouble c1 = new ComplexDouble(0.0);
                ComplexDouble c2 = new ComplexDouble(0.0);
         
                for (int i = 0; i < length; i++)
                    result.put(i, get(i, c1).#{op}(other.get(i, c2)) ? 1.0 : 0.0);
     return result;
   }
  
   public ComplexDoubleMatrix #{name}i(ComplexDoubleMatrix other) {
     return #{name}i(other, this);
   }
  
   public ComplexDoubleMatrix #{name}(ComplexDoubleMatrix other) {
     return #{name}i(other, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix #{name}i(ComplexDouble value, ComplexDoubleMatrix result) {
     ensureResultLength(null, result);
           ComplexDouble c = new ComplexDouble(0.0);
     for (int i = 0; i < length; i++)
       result.put(i, get(i, c).#{op}(value) ? 1.0 : 0.0);
     return result;
   }

   public ComplexDoubleMatrix #{name}i(double value, ComplexDoubleMatrix result) {
     return #{name}i(new ComplexDouble(value), result);
   }

   public ComplexDoubleMatrix #{name}i(ComplexDouble value) {
     return #{name}i(value, this);
   }
  
   public ComplexDoubleMatrix #{name}i(double value) {
     return #{name}i(new ComplexDouble(value));
   }
  
   public ComplexDoubleMatrix #{name}(ComplexDouble value) {
     return #{name}i(value, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix #{name}(double value) {
     return #{name}i(new ComplexDouble(value));
   }

   EOS
   end
   #*/
 
  /*#
   def gen_logical(name, op); <<-EOS
   public ComplexDoubleMatrix #{name}i(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
     assertSameLength(other);
     ensureResultLength(other, result);
    
                ComplexDouble t1 = new ComplexDouble(0.0);
                ComplexDouble t2 = new ComplexDouble(0.0);
        
               for (int i = 0; i < length; i++)
                  result.put(i, (!get(i, t1).isZero()) #{op} (!other.get(i, t2).isZero()) ? 1.0 : 0.0);
     return result;
   }
  
   public ComplexDoubleMatrix #{name}i(ComplexDoubleMatrix other) {
     return #{name}i(other, this);
   }
  
   public ComplexDoubleMatrix #{name}(ComplexDoubleMatrix other) {
     return #{name}i(other, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix #{name}i(ComplexDouble value, ComplexDoubleMatrix result) {
     ensureResultLength(null, result);
     boolean val = !value.isZero();
                ComplexDouble t = new ComplexDouble(0.0);
                for (int i = 0; i < length; i++)
                     result.put(i, !get(i, t).isZero() #{op} val ? 1.0 : 0.0);
     return result;
   }

    public ComplexDoubleMatrix #{name}i(double value, ComplexDoubleMatrix result) {
      return #{name}i(new ComplexDouble(value), result);
    }

   public ComplexDoubleMatrix #{name}i(ComplexDouble value) {
     return #{name}i(value, this);
   }

    public ComplexDoubleMatrix #{name}i(double value) {
      return #{name}i(new ComplexDouble(value), this);
    }

   public ComplexDoubleMatrix #{name}(ComplexDouble value) {
     return #{name}i(value, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix #{name}(double value) {
     return #{name}i(new ComplexDouble(value));
   }
   EOS
   end
   #*/

  /*# collect(gen_overloads('add', 'rows', 'columns'),
    gen_overloads('sub', 'rows', 'columns'),
    gen_overloads('rsub', 'rows', 'columns'),
    gen_overloads('div', 'rows', 'columns'),
    gen_overloads('rdiv', 'rows', 'columns'),
    gen_overloads('mul', 'rows', 'columns'),
    gen_overloads('mmul', 'rows', 'other.columns'),
    gen_compare('eq', 'eq'),
    gen_compare('ne', 'eq'),
    gen_logical('and', '&'),
    gen_logical('or', '|'),
    gen_logical('xor', '^'))
   #*/
//RJPP-BEGIN------------------------------------------------------------
  public ComplexDoubleMatrix addi(ComplexDoubleMatrix other) {
    return addi(other, this);
  }
    
  public ComplexDoubleMatrix add(ComplexDoubleMatrix other) {
      return addi(other, new ComplexDoubleMatrix(rows, columns));
  }

  public ComplexDoubleMatrix addi(ComplexDouble v) {
    return addi(v, this);
  }
 
  public ComplexDoubleMatrix addi(double v) {
    return addi(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix add(ComplexDouble v) {
    return addi(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix add(double v) {
    return addi(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    

  public ComplexDoubleMatrix subi(ComplexDoubleMatrix other) {
    return subi(other, this);
  }
    
  public ComplexDoubleMatrix sub(ComplexDoubleMatrix other) {
      return subi(other, new ComplexDoubleMatrix(rows, columns));
  }

  public ComplexDoubleMatrix subi(ComplexDouble v) {
    return subi(v, this);
  }
 
  public ComplexDoubleMatrix subi(double v) {
    return subi(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix sub(ComplexDouble v) {
    return subi(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix sub(double v) {
    return subi(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    

  public ComplexDoubleMatrix rsubi(ComplexDoubleMatrix other) {
    return rsubi(other, this);
  }
    
  public ComplexDoubleMatrix rsub(ComplexDoubleMatrix other) {
      return rsubi(other, new ComplexDoubleMatrix(rows, columns));
  }

  public ComplexDoubleMatrix rsubi(ComplexDouble v) {
    return rsubi(v, this);
  }
 
  public ComplexDoubleMatrix rsubi(double v) {
    return rsubi(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix rsub(ComplexDouble v) {
    return rsubi(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix rsub(double v) {
    return rsubi(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    

  public ComplexDoubleMatrix divi(ComplexDoubleMatrix other) {
    return divi(other, this);
  }
    
  public ComplexDoubleMatrix div(ComplexDoubleMatrix other) {
      return divi(other, new ComplexDoubleMatrix(rows, columns));
  }

  public ComplexDoubleMatrix divi(ComplexDouble v) {
    return divi(v, this);
  }
 
  public ComplexDoubleMatrix divi(double v) {
    return divi(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix div(ComplexDouble v) {
    return divi(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix div(double v) {
    return divi(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    

  public ComplexDoubleMatrix rdivi(ComplexDoubleMatrix other) {
    return rdivi(other, this);
  }
    
  public ComplexDoubleMatrix rdiv(ComplexDoubleMatrix other) {
      return rdivi(other, new ComplexDoubleMatrix(rows, columns));
  }

  public ComplexDoubleMatrix rdivi(ComplexDouble v) {
    return rdivi(v, this);
  }
 
  public ComplexDoubleMatrix rdivi(double v) {
    return rdivi(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix rdiv(ComplexDouble v) {
    return rdivi(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix rdiv(double v) {
    return rdivi(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    

  public ComplexDoubleMatrix muli(ComplexDoubleMatrix other) {
    return muli(other, this);
  }
    
  public ComplexDoubleMatrix mul(ComplexDoubleMatrix other) {
      return muli(other, new ComplexDoubleMatrix(rows, columns));
  }

  public ComplexDoubleMatrix muli(ComplexDouble v) {
    return muli(v, this);
  }
 
  public ComplexDoubleMatrix muli(double v) {
    return muli(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix mul(ComplexDouble v) {
    return muli(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix mul(double v) {
    return muli(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    

  public ComplexDoubleMatrix mmuli(ComplexDoubleMatrix other) {
    return mmuli(other, this);
  }
    
  public ComplexDoubleMatrix mmul(ComplexDoubleMatrix other) {
      return mmuli(other, new ComplexDoubleMatrix(rows, other.columns));
  }

  public ComplexDoubleMatrix mmuli(ComplexDouble v) {
    return mmuli(v, this);
  }
 
  public ComplexDoubleMatrix mmuli(double v) {
    return mmuli(new ComplexDouble(v), this);
  }

  public ComplexDoubleMatrix mmul(ComplexDouble v) {
    return mmuli(v, new ComplexDoubleMatrix(rows, columns));
  }  

  public ComplexDoubleMatrix mmul(double v) {
    return mmuli(new ComplexDouble(v), new ComplexDoubleMatrix(rows, columns));
  }  
    

   public ComplexDoubleMatrix eqi(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
      if (other.isScalar())
         return eqi(other.scalar(), result);
        
     assertSameLength(other);
     ensureResultLength(other, result);
    
                ComplexDouble c1 = new ComplexDouble(0.0);
                ComplexDouble c2 = new ComplexDouble(0.0);
         
                for (int i = 0; i < length; i++)
                    result.put(i, get(i, c1).eq(other.get(i, c2)) ? 1.0 : 0.0);
     return result;
   }
  
   public ComplexDoubleMatrix eqi(ComplexDoubleMatrix other) {
     return eqi(other, this);
   }
  
   public ComplexDoubleMatrix eq(ComplexDoubleMatrix other) {
     return eqi(other, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix eqi(ComplexDouble value, ComplexDoubleMatrix result) {
     ensureResultLength(null, result);
           ComplexDouble c = new ComplexDouble(0.0);
     for (int i = 0; i < length; i++)
       result.put(i, get(i, c).eq(value) ? 1.0 : 0.0);
     return result;
   }

   public ComplexDoubleMatrix eqi(double value, ComplexDoubleMatrix result) {
     return eqi(new ComplexDouble(value), result);
   }

   public ComplexDoubleMatrix eqi(ComplexDouble value) {
     return eqi(value, this);
   }
  
   public ComplexDoubleMatrix eqi(double value) {
     return eqi(new ComplexDouble(value));
   }
  
   public ComplexDoubleMatrix eq(ComplexDouble value) {
     return eqi(value, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix eq(double value) {
     return eqi(new ComplexDouble(value));
   }


   public ComplexDoubleMatrix nei(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
      if (other.isScalar())
         return nei(other.scalar(), result);
        
     assertSameLength(other);
     ensureResultLength(other, result);
    
                ComplexDouble c1 = new ComplexDouble(0.0);
                ComplexDouble c2 = new ComplexDouble(0.0);
         
                for (int i = 0; i < length; i++)
                    result.put(i, get(i, c1).eq(other.get(i, c2)) ? 1.0 : 0.0);
     return result;
   }
  
   public ComplexDoubleMatrix nei(ComplexDoubleMatrix other) {
     return nei(other, this);
   }
  
   public ComplexDoubleMatrix ne(ComplexDoubleMatrix other) {
     return nei(other, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix nei(ComplexDouble value, ComplexDoubleMatrix result) {
     ensureResultLength(null, result);
           ComplexDouble c = new ComplexDouble(0.0);
     for (int i = 0; i < length; i++)
       result.put(i, get(i, c).eq(value) ? 1.0 : 0.0);
     return result;
   }

   public ComplexDoubleMatrix nei(double value, ComplexDoubleMatrix result) {
     return nei(new ComplexDouble(value), result);
   }

   public ComplexDoubleMatrix nei(ComplexDouble value) {
     return nei(value, this);
   }
  
   public ComplexDoubleMatrix nei(double value) {
     return nei(new ComplexDouble(value));
   }
  
   public ComplexDoubleMatrix ne(ComplexDouble value) {
     return nei(value, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix ne(double value) {
     return nei(new ComplexDouble(value));
   }


   public ComplexDoubleMatrix andi(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
     assertSameLength(other);
     ensureResultLength(other, result);
    
                ComplexDouble t1 = new ComplexDouble(0.0);
                ComplexDouble t2 = new ComplexDouble(0.0);
        
               for (int i = 0; i < length; i++)
                  result.put(i, (!get(i, t1).isZero()) & (!other.get(i, t2).isZero()) ? 1.0 : 0.0);
     return result;
   }
  
   public ComplexDoubleMatrix andi(ComplexDoubleMatrix other) {
     return andi(other, this);
   }
  
   public ComplexDoubleMatrix and(ComplexDoubleMatrix other) {
     return andi(other, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix andi(ComplexDouble value, ComplexDoubleMatrix result) {
     ensureResultLength(null, result);
     boolean val = !value.isZero();
                ComplexDouble t = new ComplexDouble(0.0);
                for (int i = 0; i < length; i++)
                     result.put(i, !get(i, t).isZero() & val ? 1.0 : 0.0);
     return result;
   }

    public ComplexDoubleMatrix andi(double value, ComplexDoubleMatrix result) {
      return andi(new ComplexDouble(value), result);
    }

   public ComplexDoubleMatrix andi(ComplexDouble value) {
     return andi(value, this);
   }

    public ComplexDoubleMatrix andi(double value) {
      return andi(new ComplexDouble(value), this);
    }

   public ComplexDoubleMatrix and(ComplexDouble value) {
     return andi(value, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix and(double value) {
     return andi(new ComplexDouble(value));
   }

   public ComplexDoubleMatrix ori(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
     assertSameLength(other);
     ensureResultLength(other, result);
    
                ComplexDouble t1 = new ComplexDouble(0.0);
                ComplexDouble t2 = new ComplexDouble(0.0);
        
               for (int i = 0; i < length; i++)
                  result.put(i, (!get(i, t1).isZero()) | (!other.get(i, t2).isZero()) ? 1.0 : 0.0);
     return result;
   }
  
   public ComplexDoubleMatrix ori(ComplexDoubleMatrix other) {
     return ori(other, this);
   }
  
   public ComplexDoubleMatrix or(ComplexDoubleMatrix other) {
     return ori(other, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix ori(ComplexDouble value, ComplexDoubleMatrix result) {
     ensureResultLength(null, result);
     boolean val = !value.isZero();
                ComplexDouble t = new ComplexDouble(0.0);
                for (int i = 0; i < length; i++)
                     result.put(i, !get(i, t).isZero() | val ? 1.0 : 0.0);
     return result;
   }

    public ComplexDoubleMatrix ori(double value, ComplexDoubleMatrix result) {
      return ori(new ComplexDouble(value), result);
    }

   public ComplexDoubleMatrix ori(ComplexDouble value) {
     return ori(value, this);
   }

    public ComplexDoubleMatrix ori(double value) {
      return ori(new ComplexDouble(value), this);
    }

   public ComplexDoubleMatrix or(ComplexDouble value) {
     return ori(value, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix or(double value) {
     return ori(new ComplexDouble(value));
   }

   public ComplexDoubleMatrix xori(ComplexDoubleMatrix other, ComplexDoubleMatrix result) {
     assertSameLength(other);
     ensureResultLength(other, result);
    
                ComplexDouble t1 = new ComplexDouble(0.0);
                ComplexDouble t2 = new ComplexDouble(0.0);
        
               for (int i = 0; i < length; i++)
                  result.put(i, (!get(i, t1).isZero()) ^ (!other.get(i, t2).isZero()) ? 1.0 : 0.0);
     return result;
   }
  
   public ComplexDoubleMatrix xori(ComplexDoubleMatrix other) {
     return xori(other, this);
   }
  
   public ComplexDoubleMatrix xor(ComplexDoubleMatrix other) {
     return xori(other, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix xori(ComplexDouble value, ComplexDoubleMatrix result) {
     ensureResultLength(null, result);
     boolean val = !value.isZero();
                ComplexDouble t = new ComplexDouble(0.0);
                for (int i = 0; i < length; i++)
                     result.put(i, !get(i, t).isZero() ^ val ? 1.0 : 0.0);
     return result;
   }

    public ComplexDoubleMatrix xori(double value, ComplexDoubleMatrix result) {
      return xori(new ComplexDouble(value), result);
    }

   public ComplexDoubleMatrix xori(ComplexDouble value) {
     return xori(value, this);
   }

    public ComplexDoubleMatrix xori(double value) {
      return xori(new ComplexDouble(value), this);
    }

   public ComplexDoubleMatrix xor(ComplexDouble value) {
     return xori(value, new ComplexDoubleMatrix(rows, columns));
   }
  
   public ComplexDoubleMatrix xor(double value) {
     return xori(new ComplexDouble(value));
   }
//RJPP-END--------------------------------------------------------------
}
TOP

Related Classes of org.jblas.ComplexDoubleMatrix

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.