/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
package javax.media.j3d;
import javax.vecmath.Point3d;
import javax.vecmath.Vector3d;
/**
* The QuadArray object draws the array of vertices as individual
* quadrilaterals. Each group
* of four vertices defines a quadrilateral to be drawn.
*/
class QuadArrayRetained extends GeometryArrayRetained {
QuadArrayRetained() {
this.geoType = GEO_TYPE_QUAD_SET;
}
@Override
boolean intersect(PickShape pickShape, PickInfo pickInfo, int flags, Point3d iPnt,
GeometryRetained geom, int geomIndex) {
Point3d pnts[] = new Point3d[4];
double sdist[] = new double[1];
double minDist = Double.MAX_VALUE;
double x = 0, y = 0, z = 0;
int[] vtxIndexArr = new int[4];
int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ?
initialVertexIndex : initialCoordIndex);
pnts[0] = new Point3d();
pnts[1] = new Point3d();
pnts[2] = new Point3d();
pnts[3] = new Point3d();
switch (pickShape.getPickType()) {
case PickShape.PICKRAY:
PickRay pickRay= (PickRay) pickShape;
while (i < validVertexCount) {
for(int j=0; j<4; j++) {
vtxIndexArr[j] = i;
getVertexData(i++, pnts[j]);
}
if (intersectRay(pnts, pickRay, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
}
break;
case PickShape.PICKSEGMENT:
PickSegment pickSegment = (PickSegment) pickShape;
while (i < validVertexCount) {
for(int j=0; j<4; j++) {
vtxIndexArr[j] = i;
getVertexData(i++, pnts[j]);
}
if (intersectSegment(pnts, pickSegment.start,
pickSegment.end, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
}
break;
case PickShape.PICKBOUNDINGBOX:
BoundingBox bbox = (BoundingBox)
((PickBounds) pickShape).bounds;
while (i < validVertexCount) {
for(int j=0; j<4; j++) {
vtxIndexArr[j] = i;
getVertexData(i++, pnts[j]);
}
if (intersectBoundingBox(pnts, bbox, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
}
break;
case PickShape.PICKBOUNDINGSPHERE:
BoundingSphere bsphere = (BoundingSphere)
((PickBounds) pickShape).bounds;
while (i < validVertexCount) {
for(int j=0; j<4; j++) {
vtxIndexArr[j] = i;
getVertexData(i++, pnts[j]);
}
if (intersectBoundingSphere(pnts, bsphere, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
}
break;
case PickShape.PICKBOUNDINGPOLYTOPE:
BoundingPolytope bpolytope = (BoundingPolytope)
((PickBounds) pickShape).bounds;
while (i < validVertexCount) {
for(int j=0; j<4; j++) {
vtxIndexArr[j] = i;
getVertexData(i++, pnts[j]);
}
if (intersectBoundingPolytope(pnts, bpolytope, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
}
break;
case PickShape.PICKCYLINDER:
PickCylinder pickCylinder= (PickCylinder) pickShape;
while (i < validVertexCount) {
for(int j=0; j<4; j++) {
vtxIndexArr[j] = i;
getVertexData(i++, pnts[j]);
}
if (intersectCylinder(pnts, pickCylinder, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
}
break;
case PickShape.PICKCONE:
PickCone pickCone= (PickCone) pickShape;
while (i < validVertexCount) {
for(int j=0; j<4; j++) {
vtxIndexArr[j] = i;
getVertexData(i++, pnts[j]);
}
if (intersectCone(pnts, pickCone, sdist, iPnt)) {
if (flags == 0) {
return true;
}
if (sdist[0] < minDist) {
minDist = sdist[0];
x = iPnt.x;
y = iPnt.y;
z = iPnt.z;
if((flags & PickInfo.CLOSEST_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
if((flags & PickInfo.ALL_GEOM_INFO) != 0) {
storeInterestData(pickInfo, flags, geom, geomIndex,
vtxIndexArr, iPnt, sdist[0]);
}
}
}
break;
case PickShape.PICKPOINT:
// Should not happen since API already check for this
throw new IllegalArgumentException(J3dI18N.getString("QuadArrayRetained0"));
default:
throw new RuntimeException("PickShape not supported for intersection ");
}
if (minDist < Double.MAX_VALUE) {
iPnt.x = x;
iPnt.y = y;
iPnt.z = z;
return true;
}
return false;
}
// intersect pnts[] with every quad in this object
@Override
boolean intersect(Point3d[] pnts) {
Point3d[] points = new Point3d[4];
double dist[] = new double[1];
int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ?
initialVertexIndex : initialCoordIndex);
points[0] = new Point3d();
points[1] = new Point3d();
points[2] = new Point3d();
points[3] = new Point3d();
switch (pnts.length) {
case 3: // Triangle
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
if (intersectTriTri(points[0], points[1], points[2],
pnts[0], pnts[1], pnts[2]) ||
intersectTriTri(points[0], points[2], points[3],
pnts[0], pnts[1], pnts[2])) {
return true;
}
}
break;
case 4: // Quad
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
if (intersectTriTri(points[0], points[1], points[2],
pnts[0], pnts[1], pnts[2]) ||
intersectTriTri(points[0], points[1], points[2],
pnts[0], pnts[2], pnts[3]) ||
intersectTriTri(points[0], points[2], points[3],
pnts[0], pnts[1], pnts[2]) ||
intersectTriTri(points[0], points[2], points[3],
pnts[0], pnts[2], pnts[3])) {
return true;
}
}
break;
case 2: // Line
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
if (intersectSegment(points, pnts[0], pnts[1], dist,
null)) {
return true;
}
}
break;
case 1: // Point
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
if (intersectTriPnt(points[0], points[1], points[2],
pnts[0]) ||
intersectTriPnt(points[0], points[2], points[3],
pnts[0])) {
return true;
}
}
break;
}
return false;
}
@Override
boolean intersect(Transform3D thisToOtherVworld, GeometryRetained geom) {
Point3d[] points = new Point3d[4];
int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ?
initialVertexIndex : initialCoordIndex);
points[0] = new Point3d();
points[1] = new Point3d();
points[2] = new Point3d();
points[3] = new Point3d();
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
thisToOtherVworld.transform(points[0]);
thisToOtherVworld.transform(points[1]);
thisToOtherVworld.transform(points[2]);
thisToOtherVworld.transform(points[3]);
if (geom.intersect(points)) {
return true;
}
} // for each quad
return false;
}
// the bounds argument is already transformed
@Override
boolean intersect(Bounds targetBound) {
Point3d[] points = new Point3d[4];
int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ?
initialVertexIndex : initialCoordIndex);
points[0] = new Point3d();
points[1] = new Point3d();
points[2] = new Point3d();
points[3] = new Point3d();
switch(targetBound.getPickType()) {
case PickShape.PICKBOUNDINGBOX:
BoundingBox box = (BoundingBox) targetBound;
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
if (intersectBoundingBox(points, box, null, null)) {
return true;
}
}
break;
case PickShape.PICKBOUNDINGSPHERE:
BoundingSphere bsphere = (BoundingSphere) targetBound;
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
if (intersectBoundingSphere(points, bsphere, null,
null)) {
return true;
}
}
break;
case PickShape.PICKBOUNDINGPOLYTOPE:
BoundingPolytope bpolytope = (BoundingPolytope) targetBound;
while (i < validVertexCount) {
getVertexData(i++, points[0]);
getVertexData(i++, points[1]);
getVertexData(i++, points[2]);
getVertexData(i++, points[3]);
if (intersectBoundingPolytope(points, bpolytope, null, null)) {
return true;
}
}
break;
default:
throw new RuntimeException("Bounds not supported for intersection "
+ targetBound);
}
return false;
}
// From Graphics Gems IV (pg5) and Graphics Gems II, Pg170
// The centroid is the area-weighted sum of the centroids of
// disjoint triangles that make up the polygon.
@Override
void computeCentroid() {
int i = ((vertexFormat & GeometryArray.BY_REFERENCE) == 0 ?
initialVertexIndex : initialCoordIndex);
Point3d pnt0 = new Point3d();
Point3d pnt1 = new Point3d();
Point3d pnt2 = new Point3d();
Point3d pnt3 = new Point3d();
Vector3d vec = new Vector3d();
Vector3d normal = new Vector3d();
Vector3d tmpvec = new Vector3d();
double area;
double totalarea = 0;
centroid.x = 0;
centroid.y = 0;
centroid.z = 0;
while (i < validVertexCount) {
getVertexData(i++, pnt0);
getVertexData(i++, pnt1);
getVertexData(i++, pnt2);
getVertexData(i++, pnt3);
// Determine the normal
tmpvec.sub(pnt0, pnt1);
vec.sub(pnt1, pnt2);
// Do the cross product
normal.cross(tmpvec, vec);
normal.normalize();
// If a degenerate triangle, don't include
if (Double.isNaN(normal.x+normal.y+normal.z))
continue;
tmpvec.set(0,0,0);
// compute the area of each triangle
getCrossValue(pnt0, pnt1, tmpvec);
getCrossValue(pnt1, pnt2, tmpvec);
getCrossValue(pnt2, pnt0, tmpvec);
area = normal.dot(tmpvec);
totalarea += area;
centroid.x += (pnt0.x+pnt1.x+pnt2.x) * area;
centroid.y += (pnt0.y+pnt1.y+pnt2.y) * area;
centroid.z += (pnt0.z+pnt1.z+pnt2.z) * area;
// compute the area of each triangle
tmpvec.set(0,0,0);
getCrossValue(pnt0, pnt2, tmpvec);
getCrossValue(pnt2, pnt3, tmpvec);
getCrossValue(pnt3, pnt0, tmpvec);
area = normal.dot(tmpvec);
totalarea += area;
centroid.x += (pnt3.x+pnt0.x+pnt2.x) * area;
centroid.y += (pnt3.y+pnt0.y+pnt2.y) * area;
centroid.z += (pnt3.z+pnt0.z+pnt2.z) * area;
}
if (totalarea != 0.0) {
area = 1.0/(3.0 * totalarea);
centroid.x *= area;
centroid.y *= area;
centroid.z *= area;
}
}
@Override
int getClassType() {
return QUAD_TYPE;
}
}