/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.terrain.geomipmap;
import com.jme3.bounding.BoundingBox;
import com.jme3.bounding.BoundingVolume;
import com.jme3.collision.Collidable;
import com.jme3.collision.CollisionResults;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.material.Material;
import com.jme3.math.FastMath;
import com.jme3.math.Ray;
import com.jme3.math.Vector2f;
import com.jme3.math.Vector3f;
import com.jme3.scene.Geometry;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.scene.debug.WireBox;
import com.jme3.terrain.ProgressMonitor;
import com.jme3.terrain.Terrain;
import com.jme3.terrain.geomipmap.lodcalc.LodCalculator;
import com.jme3.terrain.geomipmap.picking.BresenhamTerrainPicker;
import com.jme3.terrain.geomipmap.picking.TerrainPickData;
import com.jme3.terrain.geomipmap.picking.TerrainPicker;
import com.jme3.util.TangentBinormalGenerator;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* <p>
* TerrainQuad is a heightfield-based terrain system. Heightfield terrain is fast and can
* render large areas, and allows for easy Level of Detail control. However it does not
* permit caves easily.
* TerrainQuad is a quad tree, meaning that the root quad has four children, and each of
* those children have four children. All the way down until you reach the bottom, the actual
* geometry, the TerrainPatches.
* If you look at a TerrainQuad in wireframe mode with the TerrainLODControl attached, you will
* see blocks that change their LOD level together; these are the TerrainPatches. The TerrainQuad
* is just an organizational structure for the TerrainPatches so patches that are not in the
* view frustum get culled quickly.
* TerrainQuads size are a power of 2, plus 1. So 513x513, or 1025x1025 etc.
* Each point in the terrain is one unit apart from its neighbour. So a 513x513 terrain
* will be 513 units wide and 513 units long.
* Patch size can be specified on the terrain. This sets how large each geometry (TerrainPatch)
* is. It also must be a power of 2 plus 1 so the terrain can be subdivided equally.
* </p>
* <p>
* The height of the terrain can be modified at runtime using setHeight()
* </p>
* <p>
* A terrain quad is a node in the quad tree of the terrain system.
* The root terrain quad will be the only one that receives the update() call every frame
* and it will determine if there has been any LOD change.
* </p><p>
* The leaves of the terrain quad tree are Terrain Patches. These have the real geometry mesh.
* </p><p>
* Heightmap coordinates start from the bottom left of the world and work towards the
* top right.
* </p><pre>
* +x
* ^
* | ......N = length of heightmap
* | : :
* | : :
* | 0.....:
* +---------> +z
* (world coordinates)
* </pre>
* @author Brent Owens
*/
public class TerrainQuad extends Node implements Terrain {
protected Vector2f offset;
protected int totalSize; // the size of this entire terrain tree (on one side)
protected int size; // size of this quad, can be between totalSize and patchSize
protected int patchSize; // size of the individual patches
protected Vector3f stepScale;
protected float offsetAmount;
protected int quadrant = 0; // 1=upper left, 2=lower left, 3=upper right, 4=lower right
private int maxLod = -1;
private BoundingBox affectedAreaBBox; // only set in the root quad
private TerrainPicker picker;
private Vector3f lastScale = Vector3f.UNIT_XYZ;
protected NeighbourFinder neighbourFinder;
public TerrainQuad() {
super("Terrain");
}
/**
* Creates a terrain with:
* <ul>
* <li>the total, real-world, size of the terrain</li>
* <li>the patchSize, or the size of each geometry tile of the terrain</li>
* <li>the heightmap that defines the height of the terrain</li>
* </ul>
* <p>
* A TerrainQuad of totalSize 513x513 will be 513 units wide and 513 units long.
* PatchSize is just used to subdivide the terrain into tiles that can be culled.
* </p>
* @param name the name of the scene element. This is required for
* identification and comparison purposes.
* @param patchSize size of the individual patches (geometry). Power of 2 plus 1,
* must be smaller than totalSize. (eg. 33, 65...)
* @param totalSize the size of this entire terrain (on one side). Power of 2 plus 1
* (eg. 513, 1025, 2049...)
* @param heightMap The height map to generate the terrain from (a flat
* height map will be generated if this is null). The size of one side of the heightmap
* must match the totalSize. So a 513x513 heightmap is needed for a terrain with totalSize of 513.
*/
public TerrainQuad(String name, int patchSize, int totalSize, float[] heightMap) {
this(name, patchSize, totalSize, Vector3f.UNIT_XYZ, heightMap);
affectedAreaBBox = new BoundingBox(new Vector3f(0,0,0), size*2, Float.MAX_VALUE, size*2);
fixNormalEdges(affectedAreaBBox);
addControl(new NormalRecalcControl(this));
}
/**
*
* @param name the name of the scene element. This is required for
* identification and comparison purposes.
* @param patchSize size of the individual patches
* @param quadSize
* @param totalSize the size of this entire terrain tree (on one side)
* @param heightMap The height map to generate the terrain from (a flat
* height map will be generated if this is null)
*/
@Deprecated
public TerrainQuad(String name, int patchSize, int quadSize, int totalSize, float[] heightMap) {
this(name, patchSize, totalSize, quadSize, Vector3f.UNIT_XYZ, heightMap);
}
/**
*
* @param name the name of the scene element. This is required for
* identification and comparison purposes.
* @param patchSize size of the individual patches
* @param size size of this quad, can be between totalSize and patchSize
* @param scale
* @param heightMap The height map to generate the terrain from (a flat
* height map will be generated if this is null)
*/
@Deprecated
public TerrainQuad(String name, int patchSize, int size, Vector3f scale, float[] heightMap) {
this(name, patchSize, size, scale, heightMap, size, new Vector2f(), 0);
//affectedAreaBBox = new BoundingBox(new Vector3f(0,0,0), size*2, Float.MAX_VALUE, size*2);
//fixNormalEdges(affectedAreaBBox);
//addControl(new NormalRecalcControl(this));
}
/**
*
* @param name the name of the scene element. This is required for
* identification and comparison purposes.
* @param patchSize size of the individual patches
* @param totalSize the size of this entire terrain tree (on one side)
* @param quadSize
* @param scale
* @param heightMap The height map to generate the terrain from (a flat
* height map will be generated if this is null)
*/
@Deprecated
public TerrainQuad(String name, int patchSize, int totalSize, int quadSize, Vector3f scale, float[] heightMap) {
this(name, patchSize, quadSize, scale, heightMap, totalSize, new Vector2f(), 0);
//affectedAreaBBox = new BoundingBox(new Vector3f(0,0,0), totalSize*2, Float.MAX_VALUE, totalSize*2);
//fixNormalEdges(affectedAreaBBox);
//addControl(new NormalRecalcControl(this));
}
protected TerrainQuad(String name, int patchSize, int quadSize,
Vector3f scale, float[] heightMap, int totalSize,
Vector2f offset, float offsetAmount)
{
super(name);
if (heightMap == null)
heightMap = generateDefaultHeightMap(quadSize);
if (!FastMath.isPowerOfTwo(quadSize - 1)) {
throw new RuntimeException("size given: " + quadSize + " Terrain quad sizes may only be (2^N + 1)");
}
if (FastMath.sqrt(heightMap.length) > quadSize) {
Logger.getLogger(this.getClass().getName()).log(Level.WARNING, "Heightmap size is larger than the terrain size. Make sure your heightmap image is the same size as the terrain!");
}
this.offset = offset;
this.offsetAmount = offsetAmount;
this.totalSize = totalSize;
this.size = quadSize;
this.patchSize = patchSize;
this.stepScale = scale;
split(patchSize, heightMap);
}
public void setNeighbourFinder(NeighbourFinder neighbourFinder) {
this.neighbourFinder = neighbourFinder;
resetCachedNeighbours();
}
/**
* Forces the recalculation of all normals on the terrain.
*/
public void recalculateAllNormals() {
affectedAreaBBox = new BoundingBox(new Vector3f(0,0,0), totalSize*2, Float.MAX_VALUE, totalSize*2);
}
/**
* Create just a flat heightmap
*/
private float[] generateDefaultHeightMap(int size) {
float[] heightMap = new float[size*size];
return heightMap;
}
/**
* update the normals if there were any height changes recently.
* Should only be called on the root quad
*/
protected void updateNormals() {
if (needToRecalculateNormals()) {
//TODO background-thread this if it ends up being expensive
fixNormals(affectedAreaBBox); // the affected patches
fixNormalEdges(affectedAreaBBox); // the edges between the patches
setNormalRecalcNeeded(null); // set to false
}
}
/**
* Caches the transforms (except rotation) so the LOD calculator,
* which runs on a separate thread, can access them safely.
*/
protected void cacheTerrainTransforms() {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).cacheTerrainTransforms();
} else if (child instanceof TerrainPatch) {
((TerrainPatch) child).cacheTerrainTransforms();
}
}
}
private int collideWithRay(Ray ray, CollisionResults results) {
if (picker == null)
picker = new BresenhamTerrainPicker(this);
Vector3f intersection = picker.getTerrainIntersection(ray, results);
if (intersection != null) {
if (ray.getLimit() < Float.POSITIVE_INFINITY) {
if (results.getClosestCollision().getDistance() <= ray.getLimit())
return 1; // in range
else
return 0; // out of range
} else
return 1;
} else
return 0;
}
/**
* Generate the entropy values for the terrain for the "perspective" LOD
* calculator. This routine can take a long time to run!
* @param progressMonitor optional
*/
public void generateEntropy(ProgressMonitor progressMonitor) {
// only check this on the root quad
if (isRootQuad())
if (progressMonitor != null) {
int numCalc = (totalSize-1)/(patchSize-1); // make it an even number
progressMonitor.setMonitorMax(numCalc*numCalc);
}
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).generateEntropy(progressMonitor);
} else if (child instanceof TerrainPatch) {
((TerrainPatch) child).generateLodEntropies();
if (progressMonitor != null)
progressMonitor.incrementProgress(1);
}
}
}
// only do this on the root quad
if (isRootQuad())
if (progressMonitor != null)
progressMonitor.progressComplete();
}
protected boolean isRootQuad() {
return (getParent() != null && !(getParent() instanceof TerrainQuad) );
}
public Material getMaterial() {
return getMaterial(null);
}
public Material getMaterial(Vector3f worldLocation) {
// get the material from one of the children. They all share the same material
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
return ((TerrainQuad)child).getMaterial(worldLocation);
} else if (child instanceof TerrainPatch) {
return ((TerrainPatch)child).getMaterial();
}
}
}
return null;
}
public int getNumMajorSubdivisions() {
return 1;
}
protected boolean calculateLod(List<Vector3f> location, HashMap<String,UpdatedTerrainPatch> updates, LodCalculator lodCalculator) {
boolean lodChanged = false;
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
boolean b = ((TerrainQuad) child).calculateLod(location, updates, lodCalculator);
if (b)
lodChanged = true;
} else if (child instanceof TerrainPatch) {
boolean b = lodCalculator.calculateLod((TerrainPatch) child, location, updates);
if (b)
lodChanged = true;
}
}
}
return lodChanged;
}
protected synchronized void findNeighboursLod(HashMap<String,UpdatedTerrainPatch> updated) {
if (children != null) {
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).findNeighboursLod(updated);
} else if (child instanceof TerrainPatch) {
TerrainPatch patch = (TerrainPatch) child;
if (!patch.searchedForNeighboursAlready) {
// set the references to the neighbours
patch.rightNeighbour = findRightPatch(patch);
patch.bottomNeighbour = findDownPatch(patch);
patch.leftNeighbour = findLeftPatch(patch);
patch.topNeighbour = findTopPatch(patch);
patch.searchedForNeighboursAlready = true;
}
TerrainPatch right = patch.rightNeighbour;
TerrainPatch down = patch.bottomNeighbour;
TerrainPatch left = patch.leftNeighbour;
TerrainPatch top = patch.topNeighbour;
UpdatedTerrainPatch utp = updated.get(patch.getName());
if (utp == null) {
utp = new UpdatedTerrainPatch(patch, patch.lod);
updated.put(utp.getName(), utp);
}
if (right != null) {
UpdatedTerrainPatch utpR = updated.get(right.getName());
if (utpR == null) {
utpR = new UpdatedTerrainPatch(right);
updated.put(utpR.getName(), utpR);
utpR.setNewLod(right.lod);
}
utp.setRightLod(utpR.getNewLod());
utpR.setLeftLod(utp.getNewLod());
}
if (down != null) {
UpdatedTerrainPatch utpD = updated.get(down.getName());
if (utpD == null) {
utpD = new UpdatedTerrainPatch(down);
updated.put(utpD.getName(), utpD);
utpD.setNewLod(down.lod);
}
utp.setBottomLod(utpD.getNewLod());
utpD.setTopLod(utp.getNewLod());
}
if (left != null) {
UpdatedTerrainPatch utpL = updated.get(left.getName());
if (utpL == null) {
utpL = new UpdatedTerrainPatch(left);
updated.put(utpL.getName(), utpL);
utpL.setNewLod(left.lod);
}
utp.setLeftLod(utpL.getNewLod());
utpL.setRightLod(utp.getNewLod());
}
if (top != null) {
UpdatedTerrainPatch utpT = updated.get(top.getName());
if (utpT == null) {
utpT = new UpdatedTerrainPatch(top);
updated.put(utpT.getName(), utpT);
utpT.setNewLod(top.lod);
}
utp.setTopLod(utpT.getNewLod());
utpT.setBottomLod(utp.getNewLod());
}
}
}
}
}
/**
* Reset the cached references of neighbours.
* TerrainQuad caches neighbours for faster LOD checks.
* Sometimes you might want to reset this cache (for instance in TerrainGrid)
*/
public void resetCachedNeighbours() {
if (children != null) {
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).resetCachedNeighbours();
} else if (child instanceof TerrainPatch) {
TerrainPatch patch = (TerrainPatch) child;
patch.searchedForNeighboursAlready = false;
}
}
}
}
/**
* Find any neighbours that should have their edges seamed because another neighbour
* changed its LOD to a greater value (less detailed)
*/
protected synchronized void fixEdges(HashMap<String,UpdatedTerrainPatch> updated) {
if (children != null) {
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).fixEdges(updated);
} else if (child instanceof TerrainPatch) {
TerrainPatch patch = (TerrainPatch) child;
UpdatedTerrainPatch utp = updated.get(patch.getName());
if(utp != null && utp.lodChanged()) {
if (!patch.searchedForNeighboursAlready) {
// set the references to the neighbours
patch.rightNeighbour = findRightPatch(patch);
patch.bottomNeighbour = findDownPatch(patch);
patch.leftNeighbour = findLeftPatch(patch);
patch.topNeighbour = findTopPatch(patch);
patch.searchedForNeighboursAlready = true;
}
TerrainPatch right = patch.rightNeighbour;
TerrainPatch down = patch.bottomNeighbour;
TerrainPatch top = patch.topNeighbour;
TerrainPatch left = patch.leftNeighbour;
if (right != null) {
UpdatedTerrainPatch utpR = updated.get(right.getName());
if (utpR == null) {
utpR = new UpdatedTerrainPatch(right);
updated.put(utpR.getName(), utpR);
utpR.setNewLod(right.lod);
}
utpR.setLeftLod(utp.getNewLod());
utpR.setFixEdges(true);
}
if (down != null) {
UpdatedTerrainPatch utpD = updated.get(down.getName());
if (utpD == null) {
utpD = new UpdatedTerrainPatch(down);
updated.put(utpD.getName(), utpD);
utpD.setNewLod(down.lod);
}
utpD.setTopLod(utp.getNewLod());
utpD.setFixEdges(true);
}
if (top != null){
UpdatedTerrainPatch utpT = updated.get(top.getName());
if (utpT == null) {
utpT = new UpdatedTerrainPatch(top);
updated.put(utpT.getName(), utpT);
utpT.setNewLod(top.lod);
}
utpT.setBottomLod(utp.getNewLod());
utpT.setFixEdges(true);
}
if (left != null){
UpdatedTerrainPatch utpL = updated.get(left.getName());
if (utpL == null) {
utpL = new UpdatedTerrainPatch(left);
updated.put(utpL.getName(), utpL);
utpL.setNewLod(left.lod);
}
utpL.setRightLod(utp.getNewLod());
utpL.setFixEdges(true);
}
}
}
}
}
}
protected synchronized void reIndexPages(HashMap<String,UpdatedTerrainPatch> updated, boolean usesVariableLod) {
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).reIndexPages(updated, usesVariableLod);
} else if (child instanceof TerrainPatch) {
((TerrainPatch) child).reIndexGeometry(updated, usesVariableLod);
}
}
}
}
/**
* <code>split</code> divides the heightmap data for four children. The
* children are either quads or patches. This is dependent on the size of the
* children. If the child's size is less than or equal to the set block
* size, then patches are created, otherwise, quads are created.
*
* @param blockSize
* the blocks size to test against.
* @param heightMap
* the height data.
*/
protected void split(int blockSize, float[] heightMap) {
if ((size >> 1) + 1 <= blockSize) {
createQuadPatch(heightMap);
} else {
createQuad(blockSize, heightMap);
}
}
/**
* Quadrants, world coordinates, and heightmap coordinates (Y-up):
*
* -z
* -u |
* -v 1|3
* -x ----+---- x
* 2|4 u
* | v
* z
* <code>createQuad</code> generates four new quads from this quad.
* The heightmap's top left (0,0) coordinate is at the bottom, -x,-z
* coordinate of the terrain, so it grows in the positive x.z direction.
*/
protected void createQuad(int blockSize, float[] heightMap) {
// create 4 terrain quads
int quarterSize = size >> 2;
int split = (size + 1) >> 1;
Vector2f tempOffset = new Vector2f();
offsetAmount += quarterSize;
//if (lodCalculator == null)
// lodCalculator = createDefaultLodCalculator(); // set a default one
// 1 upper left of heightmap, upper left quad
float[] heightBlock1 = createHeightSubBlock(heightMap, 0, 0, split);
Vector3f origin1 = new Vector3f(-quarterSize * stepScale.x, 0,
-quarterSize * stepScale.z);
tempOffset.x = offset.x;
tempOffset.y = offset.y;
tempOffset.x += origin1.x;
tempOffset.y += origin1.z;
TerrainQuad quad1 = new TerrainQuad(getName() + "Quad1", blockSize,
split, stepScale, heightBlock1, totalSize, tempOffset,
offsetAmount);
quad1.setLocalTranslation(origin1);
quad1.quadrant = 1;
this.attachChild(quad1);
// 2 lower left of heightmap, lower left quad
float[] heightBlock2 = createHeightSubBlock(heightMap, 0, split - 1,
split);
Vector3f origin2 = new Vector3f(-quarterSize * stepScale.x, 0,
quarterSize * stepScale.z);
tempOffset = new Vector2f();
tempOffset.x = offset.x;
tempOffset.y = offset.y;
tempOffset.x += origin2.x;
tempOffset.y += origin2.z;
TerrainQuad quad2 = new TerrainQuad(getName() + "Quad2", blockSize,
split, stepScale, heightBlock2, totalSize, tempOffset,
offsetAmount);
quad2.setLocalTranslation(origin2);
quad2.quadrant = 2;
this.attachChild(quad2);
// 3 upper right of heightmap, upper right quad
float[] heightBlock3 = createHeightSubBlock(heightMap, split - 1, 0,
split);
Vector3f origin3 = new Vector3f(quarterSize * stepScale.x, 0,
-quarterSize * stepScale.z);
tempOffset = new Vector2f();
tempOffset.x = offset.x;
tempOffset.y = offset.y;
tempOffset.x += origin3.x;
tempOffset.y += origin3.z;
TerrainQuad quad3 = new TerrainQuad(getName() + "Quad3", blockSize,
split, stepScale, heightBlock3, totalSize, tempOffset,
offsetAmount);
quad3.setLocalTranslation(origin3);
quad3.quadrant = 3;
this.attachChild(quad3);
// 4 lower right of heightmap, lower right quad
float[] heightBlock4 = createHeightSubBlock(heightMap, split - 1,
split - 1, split);
Vector3f origin4 = new Vector3f(quarterSize * stepScale.x, 0,
quarterSize * stepScale.z);
tempOffset = new Vector2f();
tempOffset.x = offset.x;
tempOffset.y = offset.y;
tempOffset.x += origin4.x;
tempOffset.y += origin4.z;
TerrainQuad quad4 = new TerrainQuad(getName() + "Quad4", blockSize,
split, stepScale, heightBlock4, totalSize, tempOffset,
offsetAmount);
quad4.setLocalTranslation(origin4);
quad4.quadrant = 4;
this.attachChild(quad4);
}
public void generateDebugTangents(Material mat) {
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainQuad) {
((TerrainQuad)child).generateDebugTangents(mat);
} else if (child instanceof TerrainPatch) {
Geometry debug = new Geometry( "Debug " + name,
TangentBinormalGenerator.genTbnLines( ((TerrainPatch)child).getMesh(), 0.8f));
attachChild(debug);
debug.setLocalTranslation(child.getLocalTranslation());
debug.setCullHint(CullHint.Never);
debug.setMaterial(mat);
}
}
}
/**
* <code>createQuadPatch</code> creates four child patches from this quad.
*/
protected void createQuadPatch(float[] heightMap) {
// create 4 terrain patches
int quarterSize = size >> 2;
int halfSize = size >> 1;
int split = (size + 1) >> 1;
//if (lodCalculator == null)
// lodCalculator = createDefaultLodCalculator(); // set a default one
offsetAmount += quarterSize;
// 1 lower left
float[] heightBlock1 = createHeightSubBlock(heightMap, 0, 0, split);
Vector3f origin1 = new Vector3f(-halfSize * stepScale.x, 0, -halfSize
* stepScale.z);
Vector2f tempOffset1 = new Vector2f();
tempOffset1.x = offset.x;
tempOffset1.y = offset.y;
tempOffset1.x += origin1.x / 2;
tempOffset1.y += origin1.z / 2;
TerrainPatch patch1 = new TerrainPatch(getName() + "Patch1", split,
stepScale, heightBlock1, origin1, totalSize, tempOffset1,
offsetAmount);
patch1.setQuadrant((short) 1);
this.attachChild(patch1);
patch1.setModelBound(new BoundingBox());
patch1.updateModelBound();
//patch1.setLodCalculator(lodCalculator);
//TangentBinormalGenerator.generate(patch1);
// 2 upper left
float[] heightBlock2 = createHeightSubBlock(heightMap, 0, split - 1,
split);
Vector3f origin2 = new Vector3f(-halfSize * stepScale.x, 0, 0);
Vector2f tempOffset2 = new Vector2f();
tempOffset2.x = offset.x;
tempOffset2.y = offset.y;
tempOffset2.x += origin1.x / 2;
tempOffset2.y += quarterSize * stepScale.z;
TerrainPatch patch2 = new TerrainPatch(getName() + "Patch2", split,
stepScale, heightBlock2, origin2, totalSize, tempOffset2,
offsetAmount);
patch2.setQuadrant((short) 2);
this.attachChild(patch2);
patch2.setModelBound(new BoundingBox());
patch2.updateModelBound();
//patch2.setLodCalculator(lodCalculator);
//TangentBinormalGenerator.generate(patch2);
// 3 lower right
float[] heightBlock3 = createHeightSubBlock(heightMap, split - 1, 0,
split);
Vector3f origin3 = new Vector3f(0, 0, -halfSize * stepScale.z);
Vector2f tempOffset3 = new Vector2f();
tempOffset3.x = offset.x;
tempOffset3.y = offset.y;
tempOffset3.x += quarterSize * stepScale.x;
tempOffset3.y += origin3.z / 2;
TerrainPatch patch3 = new TerrainPatch(getName() + "Patch3", split,
stepScale, heightBlock3, origin3, totalSize, tempOffset3,
offsetAmount);
patch3.setQuadrant((short) 3);
this.attachChild(patch3);
patch3.setModelBound(new BoundingBox());
patch3.updateModelBound();
//patch3.setLodCalculator(lodCalculator);
//TangentBinormalGenerator.generate(patch3);
// 4 upper right
float[] heightBlock4 = createHeightSubBlock(heightMap, split - 1,
split - 1, split);
Vector3f origin4 = new Vector3f(0, 0, 0);
Vector2f tempOffset4 = new Vector2f();
tempOffset4.x = offset.x;
tempOffset4.y = offset.y;
tempOffset4.x += quarterSize * stepScale.x;
tempOffset4.y += quarterSize * stepScale.z;
TerrainPatch patch4 = new TerrainPatch(getName() + "Patch4", split,
stepScale, heightBlock4, origin4, totalSize, tempOffset4,
offsetAmount);
patch4.setQuadrant((short) 4);
this.attachChild(patch4);
patch4.setModelBound(new BoundingBox());
patch4.updateModelBound();
//patch4.setLodCalculator(lodCalculator);
//TangentBinormalGenerator.generate(patch4);
}
public float[] createHeightSubBlock(float[] heightMap, int x,
int y, int side) {
float[] rVal = new float[side * side];
int bsize = (int) FastMath.sqrt(heightMap.length);
int count = 0;
for (int i = y; i < side + y; i++) {
for (int j = x; j < side + x; j++) {
if (j < bsize && i < bsize)
rVal[count] = heightMap[j + (i * bsize)];
count++;
}
}
return rVal;
}
/**
* A handy method that will attach all bounding boxes of this terrain
* to the node you supply.
* Useful to visualize the bounding boxes when debugging.
*
* @param parent that will get the bounding box shapes of the terrain attached to
*/
public void attachBoundChildren(Node parent) {
for (int i = 0; i < this.getQuantity(); i++) {
if (this.getChild(i) instanceof TerrainQuad) {
((TerrainQuad) getChild(i)).attachBoundChildren(parent);
} else if (this.getChild(i) instanceof TerrainPatch) {
BoundingVolume bv = getChild(i).getWorldBound();
if (bv instanceof BoundingBox) {
attachBoundingBox((BoundingBox)bv, parent);
}
}
}
BoundingVolume bv = getWorldBound();
if (bv instanceof BoundingBox) {
attachBoundingBox((BoundingBox)bv, parent);
}
}
/**
* used by attachBoundChildren()
*/
private void attachBoundingBox(BoundingBox bb, Node parent) {
WireBox wb = new WireBox(bb.getXExtent(), bb.getYExtent(), bb.getZExtent());
Geometry g = new Geometry();
g.setMesh(wb);
g.setLocalTranslation(bb.getCenter());
parent.attachChild(g);
}
/**
* Signal if the normal vectors for the terrain need to be recalculated.
* Does this by looking at the affectedAreaBBox bounding box. If the bbox
* exists already, then it will grow the box to fit the new changedPoint.
* If the affectedAreaBBox is null, then it will create one of unit size.
*
* @param needToRecalculateNormals if null, will cause needToRecalculateNormals() to return false
*/
protected void setNormalRecalcNeeded(Vector2f changedPoint) {
if (changedPoint == null) { // set needToRecalculateNormals() to false
affectedAreaBBox = null;
return;
}
if (affectedAreaBBox == null) {
affectedAreaBBox = new BoundingBox(new Vector3f(changedPoint.x, 0, changedPoint.y), 1f, Float.MAX_VALUE, 1f); // unit length
} else {
// adjust size of box to be larger
affectedAreaBBox.mergeLocal(new BoundingBox(new Vector3f(changedPoint.x, 0, changedPoint.y), 1f, Float.MAX_VALUE, 1f));
}
}
protected boolean needToRecalculateNormals() {
if (affectedAreaBBox != null)
return true;
if (!lastScale.equals(getWorldScale())) {
affectedAreaBBox = new BoundingBox(getWorldTranslation(), Float.MAX_VALUE, Float.MAX_VALUE, Float.MAX_VALUE);
lastScale = getWorldScale();
return true;
}
return false;
}
/**
* This will cause all normals for this terrain quad to be recalculated
*/
protected void setNeedToRecalculateNormals() {
affectedAreaBBox = new BoundingBox(getWorldTranslation(), Float.MAX_VALUE, Float.MAX_VALUE, Float.MAX_VALUE);
}
public float getHeightmapHeight(Vector2f xz) {
// offset
int halfSize = totalSize / 2;
int x = Math.round((xz.x / getWorldScale().x) + halfSize);
int z = Math.round((xz.y / getWorldScale().z) + halfSize);
if (!isInside(x, z))
return Float.NaN;
return getHeightmapHeight(x, z);
}
/**
* This will just get the heightmap value at the supplied point,
* not an interpolated (actual) height value.
*/
protected float getHeightmapHeight(int x, int z) {
int quad = findQuadrant(x, z);
int split = (size + 1) >> 1;
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial spat = children.get(i);
int col = x;
int row = z;
boolean match = false;
// get the childs quadrant
int childQuadrant = 0;
if (spat instanceof TerrainQuad) {
childQuadrant = ((TerrainQuad) spat).getQuadrant();
} else if (spat instanceof TerrainPatch) {
childQuadrant = ((TerrainPatch) spat).getQuadrant();
}
if (childQuadrant == 1 && (quad & 1) != 0) {
match = true;
} else if (childQuadrant == 2 && (quad & 2) != 0) {
row = z - split + 1;
match = true;
} else if (childQuadrant == 3 && (quad & 4) != 0) {
col = x - split + 1;
match = true;
} else if (childQuadrant == 4 && (quad & 8) != 0) {
col = x - split + 1;
row = z - split + 1;
match = true;
}
if (match) {
if (spat instanceof TerrainQuad) {
return ((TerrainQuad) spat).getHeightmapHeight(col, row);
} else if (spat instanceof TerrainPatch) {
return ((TerrainPatch) spat).getHeightmapHeight(col, row);
}
}
}
}
return Float.NaN;
}
protected Vector3f getMeshNormal(int x, int z) {
int quad = findQuadrant(x, z);
int split = (size + 1) >> 1;
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial spat = children.get(i);
int col = x;
int row = z;
boolean match = false;
// get the childs quadrant
int childQuadrant = 0;
if (spat instanceof TerrainQuad) {
childQuadrant = ((TerrainQuad) spat).getQuadrant();
} else if (spat instanceof TerrainPatch) {
childQuadrant = ((TerrainPatch) spat).getQuadrant();
}
if (childQuadrant == 1 && (quad & 1) != 0) {
match = true;
} else if (childQuadrant == 2 && (quad & 2) != 0) {
row = z - split + 1;
match = true;
} else if (childQuadrant == 3 && (quad & 4) != 0) {
col = x - split + 1;
match = true;
} else if (childQuadrant == 4 && (quad & 8) != 0) {
col = x - split + 1;
row = z - split + 1;
match = true;
}
if (match) {
if (spat instanceof TerrainQuad) {
return ((TerrainQuad) spat).getMeshNormal(col, row);
} else if (spat instanceof TerrainPatch) {
return ((TerrainPatch) spat).getMeshNormal(col, row);
}
}
}
}
return null;
}
/**
* is the 2d point inside the terrain?
* @param x local coordinate
* @param z local coordinate
*/
private boolean isInside(int x, int z) {
if (x < 0 || z < 0 || x > totalSize || z > totalSize)
return false;
return true;
}
/**
* Used for searching for a child and keeping
* track of its quadrant
*/
private class QuadrantChild {
int col;
int row;
Spatial child;
QuadrantChild(int col, int row, Spatial child) {
this.col = col;
this.row = row;
this.child = child;
}
}
private QuadrantChild findMatchingChild(int x, int z) {
int quad = findQuadrant(x, z);
int split = (size + 1) >> 1;
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial spat = children.get(i);
int col = x;
int row = z;
boolean match = false;
// get the childs quadrant
int childQuadrant = 0;
if (spat instanceof TerrainQuad) {
childQuadrant = ((TerrainQuad) spat).getQuadrant();
} else if (spat instanceof TerrainPatch) {
childQuadrant = ((TerrainPatch) spat).getQuadrant();
}
if (childQuadrant == 1 && (quad & 1) != 0) {
match = true;
} else if (childQuadrant == 2 && (quad & 2) != 0) {
row = z - split + 1;
match = true;
} else if (childQuadrant == 3 && (quad & 4) != 0) {
col = x - split + 1;
match = true;
} else if (childQuadrant == 4 && (quad & 8) != 0) {
col = x - split + 1;
row = z - split + 1;
match = true;
}
if (match)
return new QuadrantChild(col, row, spat);
}
}
return null;
}
/**
* Get the interpolated height of the terrain at the specified point.
* @param xz the location to get the height for
* @return Float.NAN if the value does not exist, or the coordinates are outside of the terrain
*/
public float getHeight(Vector2f xz) {
// offset
float x = (float)(((xz.x - getWorldTranslation().x) / getWorldScale().x) + (float)(totalSize-1) / 2f);
float z = (float)(((xz.y - getWorldTranslation().z) / getWorldScale().z) + (float)(totalSize-1) / 2f);
if (!isInside((int)x, (int)z))
return Float.NaN;
float height = getHeight((int)x, (int)z, (x%1f), (z%1f));
height *= getWorldScale().y;
return height;
}
/*
* gets an interpolated value at the specified point
*/
protected float getHeight(int x, int z, float xm, float zm) {
QuadrantChild match = findMatchingChild(x,z);
if (match != null) {
if (match.child instanceof TerrainQuad) {
return ((TerrainQuad) match.child).getHeight(match.col, match.row, xm, zm);
} else if (match.child instanceof TerrainPatch) {
return ((TerrainPatch) match.child).getHeight(match.col, match.row, xm, zm);
}
}
return Float.NaN;
}
public Vector3f getNormal(Vector2f xz) {
// offset
float x = (float)(((xz.x - getWorldTranslation().x) / getWorldScale().x) + (float)(totalSize-1) / 2f);
float z = (float)(((xz.y - getWorldTranslation().z) / getWorldScale().z) + (float)(totalSize-1) / 2f);
Vector3f normal = getNormal(x, z, xz);
return normal;
}
protected Vector3f getNormal(float x, float z, Vector2f xz) {
x-=0.5f;
z-=0.5f;
float col = FastMath.floor(x);
float row = FastMath.floor(z);
boolean onX = false;
if(1 - (x - col)-(z - row) < 0) // what triangle to interpolate on
onX = true;
// v1--v2 ^
// | / | |
// | / | |
// v3--v4 | Z
// |
// <-------Y
// X
Vector3f n1 = getMeshNormal((int) FastMath.ceil(x), (int) FastMath.ceil(z));
Vector3f n2 = getMeshNormal((int) FastMath.floor(x), (int) FastMath.ceil(z));
Vector3f n3 = getMeshNormal((int) FastMath.ceil(x), (int) FastMath.floor(z));
Vector3f n4 = getMeshNormal((int) FastMath.floor(x), (int) FastMath.floor(z));
return n1.add(n2).add(n3).add(n4).normalize();
}
public void setHeight(Vector2f xz, float height) {
List<Vector2f> coord = new ArrayList<Vector2f>();
coord.add(xz);
List<Float> h = new ArrayList<Float>();
h.add(height);
setHeight(coord, h);
}
public void adjustHeight(Vector2f xz, float delta) {
List<Vector2f> coord = new ArrayList<Vector2f>();
coord.add(xz);
List<Float> h = new ArrayList<Float>();
h.add(delta);
adjustHeight(coord, h);
}
public void setHeight(List<Vector2f> xz, List<Float> height) {
setHeight(xz, height, true);
}
public void adjustHeight(List<Vector2f> xz, List<Float> height) {
setHeight(xz, height, false);
}
protected void setHeight(List<Vector2f> xz, List<Float> height, boolean overrideHeight) {
if (xz.size() != height.size())
throw new IllegalArgumentException("Both lists must be the same length!");
int halfSize = totalSize / 2;
List<LocationHeight> locations = new ArrayList<LocationHeight>();
// offset
for (int i=0; i<xz.size(); i++) {
int x = Math.round((xz.get(i).x / getWorldScale().x) + halfSize);
int z = Math.round((xz.get(i).y / getWorldScale().z) + halfSize);
if (!isInside(x, z))
continue;
locations.add(new LocationHeight(x,z,height.get(i)));
}
setHeight(locations, overrideHeight); // adjust height of the actual mesh
// signal that the normals need updating
for (int i=0; i<xz.size(); i++)
setNormalRecalcNeeded(xz.get(i) );
}
protected class LocationHeight {
int x;
int z;
float h;
LocationHeight(){}
LocationHeight(int x, int z, float h){
this.x = x;
this.z = z;
this.h = h;
}
}
protected void setHeight(List<LocationHeight> locations, boolean overrideHeight) {
if (children == null)
return;
List<LocationHeight> quadLH1 = new ArrayList<LocationHeight>();
List<LocationHeight> quadLH2 = new ArrayList<LocationHeight>();
List<LocationHeight> quadLH3 = new ArrayList<LocationHeight>();
List<LocationHeight> quadLH4 = new ArrayList<LocationHeight>();
Spatial quad1 = null;
Spatial quad2 = null;
Spatial quad3 = null;
Spatial quad4 = null;
// get the child quadrants
for (int i = children.size(); --i >= 0;) {
Spatial spat = children.get(i);
int childQuadrant = 0;
if (spat instanceof TerrainQuad) {
childQuadrant = ((TerrainQuad) spat).getQuadrant();
} else if (spat instanceof TerrainPatch) {
childQuadrant = ((TerrainPatch) spat).getQuadrant();
}
if (childQuadrant == 1)
quad1 = spat;
else if (childQuadrant == 2)
quad2 = spat;
else if (childQuadrant == 3)
quad3 = spat;
else if (childQuadrant == 4)
quad4 = spat;
}
int split = (size + 1) >> 1;
// distribute each locationHeight into the quadrant it intersects
for (LocationHeight lh : locations) {
int quad = findQuadrant(lh.x, lh.z);
int col = lh.x;
int row = lh.z;
if ((quad & 1) != 0) {
quadLH1.add(lh);
}
if ((quad & 2) != 0) {
row = lh.z - split + 1;
quadLH2.add(new LocationHeight(lh.x, row, lh.h));
}
if ((quad & 4) != 0) {
col = lh.x - split + 1;
quadLH3.add(new LocationHeight(col, lh.z, lh.h));
}
if ((quad & 8) != 0) {
col = lh.x - split + 1;
row = lh.z - split + 1;
quadLH4.add(new LocationHeight(col, row, lh.h));
}
}
// send the locations to the children
if (!quadLH1.isEmpty()) {
if (quad1 instanceof TerrainQuad)
((TerrainQuad)quad1).setHeight(quadLH1, overrideHeight);
else if(quad1 instanceof TerrainPatch)
((TerrainPatch)quad1).setHeight(quadLH1, overrideHeight);
}
if (!quadLH2.isEmpty()) {
if (quad2 instanceof TerrainQuad)
((TerrainQuad)quad2).setHeight(quadLH2, overrideHeight);
else if(quad2 instanceof TerrainPatch)
((TerrainPatch)quad2).setHeight(quadLH2, overrideHeight);
}
if (!quadLH3.isEmpty()) {
if (quad3 instanceof TerrainQuad)
((TerrainQuad)quad3).setHeight(quadLH3, overrideHeight);
else if(quad3 instanceof TerrainPatch)
((TerrainPatch)quad3).setHeight(quadLH3, overrideHeight);
}
if (!quadLH4.isEmpty()) {
if (quad4 instanceof TerrainQuad)
((TerrainQuad)quad4).setHeight(quadLH4, overrideHeight);
else if(quad4 instanceof TerrainPatch)
((TerrainPatch)quad4).setHeight(quadLH4, overrideHeight);
}
}
protected boolean isPointOnTerrain(int x, int z) {
return (x >= 0 && x <= totalSize && z >= 0 && z <= totalSize);
}
public int getTerrainSize() {
return totalSize;
}
// a position can be in multiple quadrants, so use a bit anded value.
private int findQuadrant(int x, int y) {
int split = (size + 1) >> 1;
int quads = 0;
if (x < split && y < split)
quads |= 1;
if (x < split && y >= split - 1)
quads |= 2;
if (x >= split - 1 && y < split)
quads |= 4;
if (x >= split - 1 && y >= split - 1)
quads |= 8;
return quads;
}
/**
* lock or unlock the meshes of this terrain.
* Locked meshes are uneditable but have better performance.
* @param locked or unlocked
*/
public void setLocked(boolean locked) {
for (int i = 0; i < this.getQuantity(); i++) {
if (this.getChild(i) instanceof TerrainQuad) {
((TerrainQuad) getChild(i)).setLocked(locked);
} else if (this.getChild(i) instanceof TerrainPatch) {
if (locked)
((TerrainPatch) getChild(i)).lockMesh();
else
((TerrainPatch) getChild(i)).unlockMesh();
}
}
}
public int getQuadrant() {
return quadrant;
}
public void setQuadrant(short quadrant) {
this.quadrant = quadrant;
}
protected TerrainPatch getPatch(int quad) {
if (children != null)
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainPatch) {
TerrainPatch tb = (TerrainPatch) child;
if (tb.getQuadrant() == quad)
return tb;
}
}
return null;
}
protected TerrainQuad getQuad(int quad) {
if (quad == 0)
return this;
if (children != null)
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainQuad) {
TerrainQuad tq = (TerrainQuad) child;
if (tq.getQuadrant() == quad)
return tq;
}
}
return null;
}
protected TerrainPatch findRightPatch(TerrainPatch tp) {
if (tp.getQuadrant() == 1)
return getPatch(3);
else if (tp.getQuadrant() == 2)
return getPatch(4);
else if (tp.getQuadrant() == 3) {
// find the patch to the right and ask it for child 1.
TerrainQuad quad = findRightQuad();
if (quad != null)
return quad.getPatch(1);
} else if (tp.getQuadrant() == 4) {
// find the patch to the right and ask it for child 2.
TerrainQuad quad = findRightQuad();
if (quad != null)
return quad.getPatch(2);
}
return null;
}
protected TerrainPatch findDownPatch(TerrainPatch tp) {
if (tp.getQuadrant() == 1)
return getPatch(2);
else if (tp.getQuadrant() == 3)
return getPatch(4);
else if (tp.getQuadrant() == 2) {
// find the patch below and ask it for child 1.
TerrainQuad quad = findDownQuad();
if (quad != null)
return quad.getPatch(1);
} else if (tp.getQuadrant() == 4) {
TerrainQuad quad = findDownQuad();
if (quad != null)
return quad.getPatch(3);
}
return null;
}
protected TerrainPatch findTopPatch(TerrainPatch tp) {
if (tp.getQuadrant() == 2)
return getPatch(1);
else if (tp.getQuadrant() == 4)
return getPatch(3);
else if (tp.getQuadrant() == 1) {
// find the patch above and ask it for child 2.
TerrainQuad quad = findTopQuad();
if (quad != null)
return quad.getPatch(2);
} else if (tp.getQuadrant() == 3) {
TerrainQuad quad = findTopQuad();
if (quad != null)
return quad.getPatch(4);
}
return null;
}
protected TerrainPatch findLeftPatch(TerrainPatch tp) {
if (tp.getQuadrant() == 3)
return getPatch(1);
else if (tp.getQuadrant() == 4)
return getPatch(2);
else if (tp.getQuadrant() == 1) {
// find the patch above and ask it for child 3.
TerrainQuad quad = findLeftQuad();
if (quad != null)
return quad.getPatch(3);
} else if (tp.getQuadrant() == 2) {
TerrainQuad quad = findLeftQuad();
if (quad != null)
return quad.getPatch(4);
}
return null;
}
protected TerrainQuad findRightQuad() {
boolean useFinder = false;
if (getParent() == null || !(getParent() instanceof TerrainQuad)) {
if (neighbourFinder == null)
return null;
else
useFinder = true;
}
TerrainQuad pQuad = null;
if (!useFinder)
pQuad = (TerrainQuad) getParent();
if (quadrant == 1)
return pQuad.getQuad(3);
else if (quadrant == 2)
return pQuad.getQuad(4);
else if (quadrant == 3) {
TerrainQuad quad = pQuad.findRightQuad();
if (quad != null)
return quad.getQuad(1);
} else if (quadrant == 4) {
TerrainQuad quad = pQuad.findRightQuad();
if (quad != null)
return quad.getQuad(2);
} else if (quadrant == 0) {
// at the top quad
if (useFinder) {
TerrainQuad quad = neighbourFinder.getRightQuad(this);
return quad;
}
}
return null;
}
protected TerrainQuad findDownQuad() {
boolean useFinder = false;
if (getParent() == null || !(getParent() instanceof TerrainQuad)) {
if (neighbourFinder == null)
return null;
else
useFinder = true;
}
TerrainQuad pQuad = null;
if (!useFinder)
pQuad = (TerrainQuad) getParent();
if (quadrant == 1)
return pQuad.getQuad(2);
else if (quadrant == 3)
return pQuad.getQuad(4);
else if (quadrant == 2) {
TerrainQuad quad = pQuad.findDownQuad();
if (quad != null)
return quad.getQuad(1);
} else if (quadrant == 4) {
TerrainQuad quad = pQuad.findDownQuad();
if (quad != null)
return quad.getQuad(3);
} else if (quadrant == 0) {
// at the top quad
if (useFinder) {
TerrainQuad quad = neighbourFinder.getDownQuad(this);
return quad;
}
}
return null;
}
protected TerrainQuad findTopQuad() {
boolean useFinder = false;
if (getParent() == null || !(getParent() instanceof TerrainQuad)) {
if (neighbourFinder == null)
return null;
else
useFinder = true;
}
TerrainQuad pQuad = null;
if (!useFinder)
pQuad = (TerrainQuad) getParent();
if (quadrant == 2)
return pQuad.getQuad(1);
else if (quadrant == 4)
return pQuad.getQuad(3);
else if (quadrant == 1) {
TerrainQuad quad = pQuad.findTopQuad();
if (quad != null)
return quad.getQuad(2);
} else if (quadrant == 3) {
TerrainQuad quad = pQuad.findTopQuad();
if (quad != null)
return quad.getQuad(4);
} else if (quadrant == 0) {
// at the top quad
if (useFinder) {
TerrainQuad quad = neighbourFinder.getTopQuad(this);
return quad;
}
}
return null;
}
protected TerrainQuad findLeftQuad() {
boolean useFinder = false;
if (getParent() == null || !(getParent() instanceof TerrainQuad)) {
if (neighbourFinder == null)
return null;
else
useFinder = true;
}
TerrainQuad pQuad = null;
if (!useFinder)
pQuad = (TerrainQuad) getParent();
if (quadrant == 3)
return pQuad.getQuad(1);
else if (quadrant == 4)
return pQuad.getQuad(2);
else if (quadrant == 1) {
TerrainQuad quad = pQuad.findLeftQuad();
if (quad != null)
return quad.getQuad(3);
} else if (quadrant == 2) {
TerrainQuad quad = pQuad.findLeftQuad();
if (quad != null)
return quad.getQuad(4);
} else if (quadrant == 0) {
// at the top quad
if (useFinder) {
TerrainQuad quad = neighbourFinder.getLeftQuad(this);
return quad;
}
}
return null;
}
/**
* Find what terrain patches need normal recalculations and update
* their normals;
*/
protected void fixNormals(BoundingBox affectedArea) {
if (children == null)
return;
// go through the children and see if they collide with the affectedAreaBBox
// if they do, then update their normals
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainQuad) {
if (affectedArea != null && affectedArea.intersects(((TerrainQuad) child).getWorldBound()) )
((TerrainQuad) child).fixNormals(affectedArea);
} else if (child instanceof TerrainPatch) {
if (affectedArea != null && affectedArea.intersects(((TerrainPatch) child).getWorldBound()) )
((TerrainPatch) child).updateNormals(); // recalculate the patch's normals
}
}
}
/**
* fix the normals on the edge of the terrain patches.
*/
protected void fixNormalEdges(BoundingBox affectedArea) {
if (children == null)
return;
for (int x = children.size(); --x >= 0;) {
Spatial child = children.get(x);
if (child instanceof TerrainQuad) {
if (affectedArea != null && affectedArea.intersects(((TerrainQuad) child).getWorldBound()) )
((TerrainQuad) child).fixNormalEdges(affectedArea);
} else if (child instanceof TerrainPatch) {
if (affectedArea != null && !affectedArea.intersects(((TerrainPatch) child).getWorldBound()) ) // if doesn't intersect, continue
continue;
TerrainPatch tp = (TerrainPatch) child;
TerrainPatch right = findRightPatch(tp);
TerrainPatch bottom = findDownPatch(tp);
TerrainPatch top = findTopPatch(tp);
TerrainPatch left = findLeftPatch(tp);
TerrainPatch topLeft = null;
if (top != null)
topLeft = findLeftPatch(top);
TerrainPatch bottomRight = null;
if (right != null)
bottomRight = findDownPatch(right);
TerrainPatch topRight = null;
if (top != null)
topRight = findRightPatch(top);
TerrainPatch bottomLeft = null;
if (left != null)
bottomLeft = findDownPatch(left);
tp.fixNormalEdges(right, bottom, top, left, bottomRight, bottomLeft, topRight, topLeft);
}
} // for each child
}
@Override
public int collideWith(Collidable other, CollisionResults results){
int total = 0;
if (other instanceof Ray)
return collideWithRay((Ray)other, results);
// if it didn't collide with this bbox, return
if (other instanceof BoundingVolume)
if (!this.getWorldBound().intersects((BoundingVolume)other))
return total;
for (Spatial child : children){
total += child.collideWith(other, results);
}
return total;
}
/**
* Gather the terrain patches that intersect the given ray (toTest).
* This only tests the bounding boxes
* @param toTest
* @param results
*/
public void findPick(Ray toTest, List<TerrainPickData> results) {
if (getWorldBound() != null) {
if (getWorldBound().intersects(toTest)) {
// further checking needed.
for (int i = 0; i < getQuantity(); i++) {
if (children.get(i) instanceof TerrainPatch) {
TerrainPatch tp = (TerrainPatch) children.get(i);
tp.ensurePositiveVolumeBBox();
if (tp.getWorldBound().intersects(toTest)) {
CollisionResults cr = new CollisionResults();
toTest.collideWith(tp.getWorldBound(), cr);
if (cr != null && cr.getClosestCollision() != null) {
cr.getClosestCollision().getDistance();
results.add(new TerrainPickData(tp, cr.getClosestCollision()));
}
}
}
else if (children.get(i) instanceof TerrainQuad) {
((TerrainQuad) children.get(i)).findPick(toTest, results);
}
}
}
}
}
/**
* Retrieve all Terrain Patches from all children and store them
* in the 'holder' list
* @param holder must not be null, will be populated when returns
*/
public void getAllTerrainPatches(List<TerrainPatch> holder) {
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).getAllTerrainPatches(holder);
} else if (child instanceof TerrainPatch) {
holder.add((TerrainPatch)child);
}
}
}
}
public void getAllTerrainPatchesWithTranslation(Map<TerrainPatch,Vector3f> holder, Vector3f translation) {
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).getAllTerrainPatchesWithTranslation(holder, translation.clone().add(child.getLocalTranslation()));
} else if (child instanceof TerrainPatch) {
//if (holder.size() < 4)
holder.put((TerrainPatch)child, translation.clone().add(child.getLocalTranslation()));
}
}
}
}
@Override
public void read(JmeImporter e) throws IOException {
super.read(e);
InputCapsule c = e.getCapsule(this);
size = c.readInt("size", 0);
stepScale = (Vector3f) c.readSavable("stepScale", null);
offset = (Vector2f) c.readSavable("offset", new Vector2f(0,0));
offsetAmount = c.readFloat("offsetAmount", 0);
quadrant = c.readInt("quadrant", 0);
totalSize = c.readInt("totalSize", 0);
//lodCalculator = (LodCalculator) c.readSavable("lodCalculator", createDefaultLodCalculator());
//lodCalculatorFactory = (LodCalculatorFactory) c.readSavable("lodCalculatorFactory", null);
if ( !(getParent() instanceof TerrainQuad) ) {
BoundingBox all = new BoundingBox(getWorldTranslation(), totalSize, totalSize, totalSize);
affectedAreaBBox = all;
updateNormals();
}
}
@Override
public void write(JmeExporter e) throws IOException {
super.write(e);
OutputCapsule c = e.getCapsule(this);
c.write(size, "size", 0);
c.write(totalSize, "totalSize", 0);
c.write(stepScale, "stepScale", null);
c.write(offset, "offset", new Vector2f(0,0));
c.write(offsetAmount, "offsetAmount", 0);
c.write(quadrant, "quadrant", 0);
//c.write(lodCalculatorFactory, "lodCalculatorFactory", null);
//c.write(lodCalculator, "lodCalculator", null);
}
@Override
public TerrainQuad clone() {
return this.clone(true);
}
@Override
public TerrainQuad clone(boolean cloneMaterials) {
TerrainQuad quadClone = (TerrainQuad) super.clone(cloneMaterials);
quadClone.name = name.toString();
quadClone.size = size;
quadClone.totalSize = totalSize;
if (stepScale != null) {
quadClone.stepScale = stepScale.clone();
}
if (offset != null) {
quadClone.offset = offset.clone();
}
quadClone.offsetAmount = offsetAmount;
quadClone.quadrant = quadrant;
//quadClone.lodCalculatorFactory = lodCalculatorFactory.clone();
//quadClone.lodCalculator = lodCalculator.clone();
TerrainLodControl lodControlCloned = this.getControl(TerrainLodControl.class);
TerrainLodControl lodControl = quadClone.getControl(TerrainLodControl.class);
if (lodControlCloned != null && !(getParent() instanceof TerrainQuad)) {
//lodControlCloned.setLodCalculator(lodControl.getLodCalculator().clone());
}
NormalRecalcControl normalControl = getControl(NormalRecalcControl.class);
if (normalControl != null)
normalControl.setTerrain(this);
return quadClone;
}
@Override
protected void setParent(Node parent) {
super.setParent(parent);
if (parent == null) {
// if the terrain is being detached
clearCaches();
}
}
/**
* Removes any cached references this terrain is holding, in particular
* the TerrainPatch's neighbour references.
* This is called automatically when the root terrainQuad is detached from
* its parent or if setParent(null) is called.
*/
public void clearCaches() {
if (children != null) {
for (int i = children.size(); --i >= 0;) {
Spatial child = children.get(i);
if (child instanceof TerrainQuad) {
((TerrainQuad) child).clearCaches();
} else if (child instanceof TerrainPatch) {
((TerrainPatch) child).clearCaches();
}
}
}
}
public int getMaxLod() {
if (maxLod < 0)
maxLod = Math.max(1, (int) (FastMath.log(size-1)/FastMath.log(2)) -1); // -1 forces our minimum of 4 triangles wide
return maxLod;
}
public int getPatchSize() {
return patchSize;
}
public int getTotalSize() {
return totalSize;
}
public float[] getHeightMap() {
float[] hm = null;
int length = ((size-1)/2)+1;
int area = size*size;
hm = new float[area];
if (getChildren() != null && !getChildren().isEmpty()) {
float[] ul=null, ur=null, bl=null, br=null;
// get the child heightmaps
if (getChild(0) instanceof TerrainPatch) {
for (Spatial s : getChildren()) {
if ( ((TerrainPatch)s).getQuadrant() == 1)
ul = ((TerrainPatch)s).getHeightMap();
else if(((TerrainPatch) s).getQuadrant() == 2)
bl = ((TerrainPatch)s).getHeightMap();
else if(((TerrainPatch) s).getQuadrant() == 3)
ur = ((TerrainPatch)s).getHeightMap();
else if(((TerrainPatch) s).getQuadrant() == 4)
br = ((TerrainPatch)s).getHeightMap();
}
}
else {
ul = getQuad(1).getHeightMap();
bl = getQuad(2).getHeightMap();
ur = getQuad(3).getHeightMap();
br = getQuad(4).getHeightMap();
}
// combine them into a single heightmap
// first upper blocks
for (int y=0; y<length; y++) { // rows
for (int x1=0; x1<length; x1++) {
int row = y*size;
hm[row+x1] = ul[y*length+x1];
}
for (int x2=1; x2<length; x2++) {
int row = y*size + length;
hm[row+x2-1] = ur[y*length + x2];
}
}
// second lower blocks
int rowOffset = size*length;
for (int y=1; y<length; y++) { // rows
for (int x1=0; x1<length; x1++) {
int row = (y-1)*size;
hm[rowOffset+row+x1] = bl[y*length+x1];
}
for (int x2=1; x2<length; x2++) {
int row = (y-1)*size + length;
hm[rowOffset+row+x2-1] = br[y*length + x2];
}
}
}
return hm;
}
}