/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.shadow;
import com.jme3.asset.AssetManager;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.light.DirectionalLight;
import com.jme3.material.Material;
import com.jme3.math.ColorRGBA;
import com.jme3.math.Vector2f;
import com.jme3.math.Vector3f;
import com.jme3.renderer.Camera;
import com.jme3.renderer.queue.GeometryList;
import com.jme3.scene.Node;
import java.io.IOException;
/**
* DirectionalLightShadowRenderer renderer use Parrallel Split Shadow Mapping
* technique (pssm)<br> It splits the view frustum in several parts and compute
* a shadow map for each one.<br> splits are distributed so that the closer they
* are from the camera, the smaller they are to maximize the resolution used of
* the shadow map.<br> This result in a better quality shadow than standard
* shadow mapping.<br> for more informations on this read this <a
* href="http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html">http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html</a><br>
* <p/>
* @author Rémy Bouquet aka Nehon
*/
public class DirectionalLightShadowRenderer extends AbstractShadowRenderer {
protected float lambda = 0.65f;
protected float zFarOverride = 0;
protected Camera shadowCam;
protected ColorRGBA splits;
protected float[] splitsArray;
protected DirectionalLight light;
protected Vector3f[] points = new Vector3f[8];
//Holding the info for fading shadows in the far distance
protected Vector2f fadeInfo;
protected float fadeLength;
private boolean stabilize = true;
/**
* Used for serialzation use
* DirectionalLightShadowRenderer#DirectionalLightShadowRenderer(AssetManager
* assetManager, int shadowMapSize, int nbSplits)
*/
public DirectionalLightShadowRenderer() {
super();
}
/**
* Create a DirectionalLightShadowRenderer More info on the technique at <a
* href="http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html">http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html</a>
*
* @param assetManager the application asset manager
* @param shadowMapSize the size of the rendered shadowmaps (512,1024,2048,
* etc...)
* @param nbSplits the number of shadow maps rendered (the more shadow maps
* the more quality, the less fps).
*/
public DirectionalLightShadowRenderer(AssetManager assetManager, int shadowMapSize, int nbSplits) {
super(assetManager, shadowMapSize, nbSplits);
init(nbSplits, shadowMapSize);
}
private void init(int nbSplits, int shadowMapSize) {
nbShadowMaps = Math.max(Math.min(nbSplits, 4), 1);
if (nbShadowMaps != nbSplits) {
throw new IllegalArgumentException("Number of splits must be between 1 and 4. Given value : " + nbSplits);
}
splits = new ColorRGBA();
splitsArray = new float[nbSplits + 1];
shadowCam = new Camera(shadowMapSize, shadowMapSize);
shadowCam.setParallelProjection(true);
for (int i = 0; i < points.length; i++) {
points[i] = new Vector3f();
}
}
/**
* return the light used to cast shadows
*
* @return the DirectionalLight
*/
public DirectionalLight getLight() {
return light;
}
/**
* Sets the light to use to cast shadows
*
* @param light a DirectionalLight
*/
public void setLight(DirectionalLight light) {
this.light = light;
}
@Override
protected void updateShadowCams(Camera viewCam) {
float zFar = zFarOverride;
if (zFar == 0) {
zFar = viewCam.getFrustumFar();
}
//We prevent computing the frustum points and splits with zeroed or negative near clip value
float frustumNear = Math.max(viewCam.getFrustumNear(), 0.001f);
ShadowUtil.updateFrustumPoints(viewCam, frustumNear, zFar, 1.0f, points);
//shadowCam.setDirection(direction);
shadowCam.getRotation().lookAt(light.getDirection(), shadowCam.getUp());
shadowCam.update();
shadowCam.updateViewProjection();
PssmShadowUtil.updateFrustumSplits(splitsArray, frustumNear, zFar, lambda);
// in parallel projection shadow position goe from 0 to 1
if(viewCam.isParallelProjection()){
for (int i = 0; i < nbShadowMaps; i++) {
splitsArray[i] = splitsArray[i]/(zFar- frustumNear);
}
}
switch (splitsArray.length) {
case 5:
splits.a = splitsArray[4];
case 4:
splits.b = splitsArray[3];
case 3:
splits.g = splitsArray[2];
case 2:
case 1:
splits.r = splitsArray[1];
break;
}
}
@Override
protected GeometryList getOccludersToRender(int shadowMapIndex, GeometryList sceneOccluders, GeometryList sceneReceivers, GeometryList shadowMapOccluders) {
// update frustum points based on current camera and split
ShadowUtil.updateFrustumPoints(viewPort.getCamera(), splitsArray[shadowMapIndex], splitsArray[shadowMapIndex + 1], 1.0f, points);
//Updating shadow cam with curent split frustra
ShadowUtil.updateShadowCamera(sceneOccluders, sceneReceivers, shadowCam, points, shadowMapOccluders, stabilize?shadowMapSize:0);
return shadowMapOccluders;
}
@Override
GeometryList getReceivers(GeometryList sceneReceivers, GeometryList lightReceivers) {
return sceneReceivers;
}
@Override
protected Camera getShadowCam(int shadowMapIndex) {
return shadowCam;
}
@Override
protected void doDisplayFrustumDebug(int shadowMapIndex) {
((Node) viewPort.getScenes().get(0)).attachChild(createFrustum(points, shadowMapIndex));
ShadowUtil.updateFrustumPoints2(shadowCam, points);
((Node) viewPort.getScenes().get(0)).attachChild(createFrustum(points, shadowMapIndex));
}
@Override
protected void setMaterialParameters(Material material) {
material.setColor("Splits", splits);
}
/**
* returns the labda parameter see #setLambda(float lambda)
*
* @return lambda
*/
public float getLambda() {
return lambda;
}
/*
* Adjust the repartition of the different shadow maps in the shadow extend
* usualy goes from 0.0 to 1.0
* a low value give a more linear repartition resulting in a constant quality in the shadow over the extends, but near shadows could look very jagged
* a high value give a more logarithmic repartition resulting in a high quality for near shadows, but the quality quickly decrease over the extend.
* the default value is set to 0.65f (theoric optimal value).
* @param lambda the lambda value.
*/
public void setLambda(float lambda) {
this.lambda = lambda;
}
/**
* How far the shadows are rendered in the view
*
* @see #setShadowZExtend(float zFar)
* @return shadowZExtend
*/
public float getShadowZExtend() {
return zFarOverride;
}
/**
* Set the distance from the eye where the shadows will be rendered default
* value is dynamicaly computed to the shadow casters/receivers union bound
* zFar, capped to view frustum far value.
*
* @param zFar the zFar values that override the computed one
*/
public void setShadowZExtend(float zFar) {
if (fadeInfo != null) {
fadeInfo.set(zFar - fadeLength, 1f / fadeLength);
}
this.zFarOverride = zFar;
}
/**
* Define the length over which the shadow will fade out when using a
* shadowZextend This is useful to make dynamic shadows fade into baked
* shadows in the distance.
*
* @param length the fade length in world units
*/
public void setShadowZFadeLength(float length) {
if (length == 0) {
fadeInfo = null;
fadeLength = 0;
postshadowMat.clearParam("FadeInfo");
} else {
if (zFarOverride == 0) {
fadeInfo = new Vector2f(0, 0);
} else {
fadeInfo = new Vector2f(zFarOverride - length, 1.0f / length);
}
fadeLength = length;
postshadowMat.setVector2("FadeInfo", fadeInfo);
}
}
/**
* get the length over which the shadow will fade out when using a
* shadowZextend
*
* @return the fade length in world units
*/
public float getShadowZFadeLength() {
if (fadeInfo != null) {
return zFarOverride - fadeInfo.x;
}
return 0f;
}
/**
* retruns true if stabilization is enabled
* @return
*/
public boolean isEnabledStabilization() {
return stabilize;
}
/**
* Enables the stabilization of the shadows's edges. (default is true)
* This prevents shadows' edges to flicker when the camera moves
* However it can lead to some shadow quality loss in some particular scenes.
* @param stabilize
*/
public void setEnabledStabilization(boolean stabilize) {
this.stabilize = stabilize;
}
@Override
public void read(JmeImporter im) throws IOException {
super.read(im);
InputCapsule ic = (InputCapsule) im.getCapsule(this);
lambda = ic.readFloat("lambda", 0.65f);
zFarOverride = ic.readInt("zFarOverride", 0);
light = (DirectionalLight) ic.readSavable("light", null);
fadeInfo = (Vector2f) ic.readSavable("fadeInfo", null);
fadeLength = ic.readFloat("fadeLength", 0f);
init(nbShadowMaps, (int) shadowMapSize);
}
@Override
public void write(JmeExporter ex) throws IOException {
super.write(ex);
OutputCapsule oc = (OutputCapsule) ex.getCapsule(this);
oc.write(lambda, "lambda", 0.65f);
oc.write(zFarOverride, "zFarOverride", 0);
oc.write(light, "light", null);
oc.write(fadeInfo, "fadeInfo", null);
oc.write(fadeLength, "fadeLength", 0f);
}
}