/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.math;
import com.jme3.export.*;
import com.jme3.util.BufferUtils;
import com.jme3.util.TempVars;
import java.io.IOException;
import java.nio.FloatBuffer;
import java.util.logging.Logger;
/**
* <code>Matrix3f</code> defines a 3x3 matrix. Matrix data is maintained
* internally and is accessible via the get and set methods. Convenience methods
* are used for matrix operations as well as generating a matrix from a given
* set of values.
*
* @author Mark Powell
* @author Joshua Slack
*/
public final class Matrix3f implements Savable, Cloneable, java.io.Serializable {
static final long serialVersionUID = 1;
private static final Logger logger = Logger.getLogger(Matrix3f.class.getName());
protected float m00, m01, m02;
protected float m10, m11, m12;
protected float m20, m21, m22;
public static final Matrix3f ZERO = new Matrix3f(0, 0, 0, 0, 0, 0, 0, 0, 0);
public static final Matrix3f IDENTITY = new Matrix3f();
/**
* Constructor instantiates a new <code>Matrix3f</code> object. The
* initial values for the matrix is that of the identity matrix.
*
*/
public Matrix3f() {
loadIdentity();
}
/**
* constructs a matrix with the given values.
*
* @param m00
* 0x0 in the matrix.
* @param m01
* 0x1 in the matrix.
* @param m02
* 0x2 in the matrix.
* @param m10
* 1x0 in the matrix.
* @param m11
* 1x1 in the matrix.
* @param m12
* 1x2 in the matrix.
* @param m20
* 2x0 in the matrix.
* @param m21
* 2x1 in the matrix.
* @param m22
* 2x2 in the matrix.
*/
public Matrix3f(float m00, float m01, float m02, float m10, float m11,
float m12, float m20, float m21, float m22) {
this.m00 = m00;
this.m01 = m01;
this.m02 = m02;
this.m10 = m10;
this.m11 = m11;
this.m12 = m12;
this.m20 = m20;
this.m21 = m21;
this.m22 = m22;
}
/**
* Copy constructor that creates a new <code>Matrix3f</code> object that
* is the same as the provided matrix.
*
* @param mat
* the matrix to copy.
*/
public Matrix3f(Matrix3f mat) {
set(mat);
}
/**
* Takes the absolute value of all matrix fields locally.
*/
public void absoluteLocal() {
m00 = FastMath.abs(m00);
m01 = FastMath.abs(m01);
m02 = FastMath.abs(m02);
m10 = FastMath.abs(m10);
m11 = FastMath.abs(m11);
m12 = FastMath.abs(m12);
m20 = FastMath.abs(m20);
m21 = FastMath.abs(m21);
m22 = FastMath.abs(m22);
}
/**
* <code>copy</code> transfers the contents of a given matrix to this
* matrix. If a null matrix is supplied, this matrix is set to the identity
* matrix.
*
* @param matrix
* the matrix to copy.
* @return this
*/
public Matrix3f set(Matrix3f matrix) {
if (null == matrix) {
loadIdentity();
} else {
m00 = matrix.m00;
m01 = matrix.m01;
m02 = matrix.m02;
m10 = matrix.m10;
m11 = matrix.m11;
m12 = matrix.m12;
m20 = matrix.m20;
m21 = matrix.m21;
m22 = matrix.m22;
}
return this;
}
/**
* <code>get</code> retrieves a value from the matrix at the given
* position. If the position is invalid a <code>JmeException</code> is
* thrown.
*
* @param i
* the row index.
* @param j
* the colum index.
* @return the value at (i, j).
*/
@SuppressWarnings("fallthrough")
public float get(int i, int j) {
switch (i) {
case 0:
switch (j) {
case 0:
return m00;
case 1:
return m01;
case 2:
return m02;
}
case 1:
switch (j) {
case 0:
return m10;
case 1:
return m11;
case 2:
return m12;
}
case 2:
switch (j) {
case 0:
return m20;
case 1:
return m21;
case 2:
return m22;
}
}
logger.warning("Invalid matrix index.");
throw new IllegalArgumentException("Invalid indices into matrix.");
}
/**
* <code>get(float[])</code> returns the matrix in row-major or column-major order.
*
* @param data
* The array to return the data into. This array can be 9 or 16 floats in size.
* Only the upper 3x3 are assigned to in the case of a 16 element array.
* @param rowMajor
* True for row major storage in the array (translation in elements 3, 7, 11 for a 4x4),
* false for column major (translation in elements 12, 13, 14 for a 4x4).
*/
public void get(float[] data, boolean rowMajor) {
if (data.length == 9) {
if (rowMajor) {
data[0] = m00;
data[1] = m01;
data[2] = m02;
data[3] = m10;
data[4] = m11;
data[5] = m12;
data[6] = m20;
data[7] = m21;
data[8] = m22;
} else {
data[0] = m00;
data[1] = m10;
data[2] = m20;
data[3] = m01;
data[4] = m11;
data[5] = m21;
data[6] = m02;
data[7] = m12;
data[8] = m22;
}
} else if (data.length == 16) {
if (rowMajor) {
data[0] = m00;
data[1] = m01;
data[2] = m02;
data[4] = m10;
data[5] = m11;
data[6] = m12;
data[8] = m20;
data[9] = m21;
data[10] = m22;
} else {
data[0] = m00;
data[1] = m10;
data[2] = m20;
data[4] = m01;
data[5] = m11;
data[6] = m21;
data[8] = m02;
data[9] = m12;
data[10] = m22;
}
} else {
throw new IndexOutOfBoundsException("Array size must be 9 or 16 in Matrix3f.get().");
}
}
/**
* Normalize this matrix and store the result in the store parameter that is
* returned.
*
* Note that the original matrix is not altered.
*
* @param store the matrix to store the result of the normalization. If this
* parameter is null a new one is created
* @return the normalized matrix
*/
public Matrix3f normalize(Matrix3f store) {
if (store == null) {
store = new Matrix3f();
}
float mag = 1.0f / FastMath.sqrt(
m00 * m00
+ m10 * m10
+ m20 * m20);
store.m00 = m00 * mag;
store.m10 = m10 * mag;
store.m20 = m20 * mag;
mag = 1.0f / FastMath.sqrt(
m01 * m01
+ m11 * m11
+ m21 * m21);
store.m01 = m01 * mag;
store.m11 = m11 * mag;
store.m21 = m21 * mag;
store.m02 = store.m10 * store.m21 - store.m11 * store.m20;
store.m12 = store.m01 * store.m20 - store.m00 * store.m21;
store.m22 = store.m00 * store.m11 - store.m01 * store.m10;
return store;
}
/**
* Normalize this matrix
* @return this matrix once normalized.
*/
public Matrix3f normalizeLocal() {
return normalize(this);
}
/**
* <code>getColumn</code> returns one of three columns specified by the
* parameter. This column is returned as a <code>Vector3f</code> object.
*
* @param i
* the column to retrieve. Must be between 0 and 2.
* @return the column specified by the index.
*/
public Vector3f getColumn(int i) {
return getColumn(i, null);
}
/**
* <code>getColumn</code> returns one of three columns specified by the
* parameter. This column is returned as a <code>Vector3f</code> object.
*
* @param i
* the column to retrieve. Must be between 0 and 2.
* @param store
* the vector object to store the result in. if null, a new one
* is created.
* @return the column specified by the index.
*/
public Vector3f getColumn(int i, Vector3f store) {
if (store == null) {
store = new Vector3f();
}
switch (i) {
case 0:
store.x = m00;
store.y = m10;
store.z = m20;
break;
case 1:
store.x = m01;
store.y = m11;
store.z = m21;
break;
case 2:
store.x = m02;
store.y = m12;
store.z = m22;
break;
default:
logger.warning("Invalid column index.");
throw new IllegalArgumentException("Invalid column index. " + i);
}
return store;
}
/**
* <code>getColumn</code> returns one of three rows as specified by the
* parameter. This row is returned as a <code>Vector3f</code> object.
*
* @param i
* the row to retrieve. Must be between 0 and 2.
* @return the row specified by the index.
*/
public Vector3f getRow(int i) {
return getRow(i, null);
}
/**
* <code>getRow</code> returns one of three rows as specified by the
* parameter. This row is returned as a <code>Vector3f</code> object.
*
* @param i
* the row to retrieve. Must be between 0 and 2.
* @param store
* the vector object to store the result in. if null, a new one
* is created.
* @return the row specified by the index.
*/
public Vector3f getRow(int i, Vector3f store) {
if (store == null) {
store = new Vector3f();
}
switch (i) {
case 0:
store.x = m00;
store.y = m01;
store.z = m02;
break;
case 1:
store.x = m10;
store.y = m11;
store.z = m12;
break;
case 2:
store.x = m20;
store.y = m21;
store.z = m22;
break;
default:
logger.warning("Invalid row index.");
throw new IllegalArgumentException("Invalid row index. " + i);
}
return store;
}
/**
* <code>toFloatBuffer</code> returns a FloatBuffer object that contains
* the matrix data.
*
* @return matrix data as a FloatBuffer.
*/
public FloatBuffer toFloatBuffer() {
FloatBuffer fb = BufferUtils.createFloatBuffer(9);
fb.put(m00).put(m01).put(m02);
fb.put(m10).put(m11).put(m12);
fb.put(m20).put(m21).put(m22);
fb.rewind();
return fb;
}
/**
* <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
* data.
*
* @param fb
* the buffer to fill, starting at current position. Must have
* room for 9 more floats.
* @return matrix data as a FloatBuffer. (position is advanced by 9 and any
* limit set is not changed).
*/
public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) {
// if (columnMajor){
// fb.put(m00).put(m10).put(m20);
// fb.put(m01).put(m11).put(m21);
// fb.put(m02).put(m12).put(m22);
// }else{
// fb.put(m00).put(m01).put(m02);
// fb.put(m10).put(m11).put(m12);
// fb.put(m20).put(m21).put(m22);
// }
TempVars vars = TempVars.get();
fillFloatArray(vars.matrixWrite, columnMajor);
fb.put(vars.matrixWrite, 0, 9);
vars.release();
return fb;
}
public void fillFloatArray(float[] f, boolean columnMajor) {
if (columnMajor) {
f[ 0] = m00;
f[ 1] = m10;
f[ 2] = m20;
f[ 3] = m01;
f[ 4] = m11;
f[ 5] = m21;
f[ 6] = m02;
f[ 7] = m12;
f[ 8] = m22;
} else {
f[ 0] = m00;
f[ 1] = m01;
f[ 2] = m02;
f[ 3] = m10;
f[ 4] = m11;
f[ 5] = m12;
f[ 6] = m20;
f[ 7] = m21;
f[ 8] = m22;
}
}
/**
*
* <code>setColumn</code> sets a particular column of this matrix to that
* represented by the provided vector.
*
* @param i
* the column to set.
* @param column
* the data to set.
* @return this
*/
public Matrix3f setColumn(int i, Vector3f column) {
if (column == null) {
logger.warning("Column is null. Ignoring.");
return this;
}
switch (i) {
case 0:
m00 = column.x;
m10 = column.y;
m20 = column.z;
break;
case 1:
m01 = column.x;
m11 = column.y;
m21 = column.z;
break;
case 2:
m02 = column.x;
m12 = column.y;
m22 = column.z;
break;
default:
logger.warning("Invalid column index.");
throw new IllegalArgumentException("Invalid column index. " + i);
}
return this;
}
/**
*
* <code>setRow</code> sets a particular row of this matrix to that
* represented by the provided vector.
*
* @param i
* the row to set.
* @param row
* the data to set.
* @return this
*/
public Matrix3f setRow(int i, Vector3f row) {
if (row == null) {
logger.warning("Row is null. Ignoring.");
return this;
}
switch (i) {
case 0:
m00 = row.x;
m01 = row.y;
m02 = row.z;
break;
case 1:
m10 = row.x;
m11 = row.y;
m12 = row.z;
break;
case 2:
m20 = row.x;
m21 = row.y;
m22 = row.z;
break;
default:
logger.warning("Invalid row index.");
throw new IllegalArgumentException("Invalid row index. " + i);
}
return this;
}
/**
* <code>set</code> places a given value into the matrix at the given
* position. If the position is invalid a <code>JmeException</code> is
* thrown.
*
* @param i
* the row index.
* @param j
* the colum index.
* @param value
* the value for (i, j).
* @return this
*/
@SuppressWarnings("fallthrough")
public Matrix3f set(int i, int j, float value) {
switch (i) {
case 0:
switch (j) {
case 0:
m00 = value;
return this;
case 1:
m01 = value;
return this;
case 2:
m02 = value;
return this;
}
case 1:
switch (j) {
case 0:
m10 = value;
return this;
case 1:
m11 = value;
return this;
case 2:
m12 = value;
return this;
}
case 2:
switch (j) {
case 0:
m20 = value;
return this;
case 1:
m21 = value;
return this;
case 2:
m22 = value;
return this;
}
}
logger.warning("Invalid matrix index.");
throw new IllegalArgumentException("Invalid indices into matrix.");
}
/**
*
* <code>set</code> sets the values of the matrix to those supplied by the
* 3x3 two dimenion array.
*
* @param matrix
* the new values of the matrix.
* @throws JmeException
* if the array is not of size 9.
* @return this
*/
public Matrix3f set(float[][] matrix) {
if (matrix.length != 3 || matrix[0].length != 3) {
throw new IllegalArgumentException(
"Array must be of size 9.");
}
m00 = matrix[0][0];
m01 = matrix[0][1];
m02 = matrix[0][2];
m10 = matrix[1][0];
m11 = matrix[1][1];
m12 = matrix[1][2];
m20 = matrix[2][0];
m21 = matrix[2][1];
m22 = matrix[2][2];
return this;
}
/**
* Recreate Matrix using the provided axis.
*
* @param uAxis
* Vector3f
* @param vAxis
* Vector3f
* @param wAxis
* Vector3f
*/
public void fromAxes(Vector3f uAxis, Vector3f vAxis, Vector3f wAxis) {
m00 = uAxis.x;
m10 = uAxis.y;
m20 = uAxis.z;
m01 = vAxis.x;
m11 = vAxis.y;
m21 = vAxis.z;
m02 = wAxis.x;
m12 = wAxis.y;
m22 = wAxis.z;
}
/**
* <code>set</code> sets the values of this matrix from an array of
* values assuming that the data is rowMajor order;
*
* @param matrix
* the matrix to set the value to.
* @return this
*/
public Matrix3f set(float[] matrix) {
return set(matrix, true);
}
/**
* <code>set</code> sets the values of this matrix from an array of
* values;
*
* @param matrix
* the matrix to set the value to.
* @param rowMajor
* whether the incoming data is in row or column major order.
* @return this
*/
public Matrix3f set(float[] matrix, boolean rowMajor) {
if (matrix.length != 9) {
throw new IllegalArgumentException(
"Array must be of size 9.");
}
if (rowMajor) {
m00 = matrix[0];
m01 = matrix[1];
m02 = matrix[2];
m10 = matrix[3];
m11 = matrix[4];
m12 = matrix[5];
m20 = matrix[6];
m21 = matrix[7];
m22 = matrix[8];
} else {
m00 = matrix[0];
m01 = matrix[3];
m02 = matrix[6];
m10 = matrix[1];
m11 = matrix[4];
m12 = matrix[7];
m20 = matrix[2];
m21 = matrix[5];
m22 = matrix[8];
}
return this;
}
/**
*
* <code>set</code> defines the values of the matrix based on a supplied
* <code>Quaternion</code>. It should be noted that all previous values
* will be overridden.
*
* @param quaternion
* the quaternion to create a rotational matrix from.
* @return this
*/
public Matrix3f set(Quaternion quaternion) {
return quaternion.toRotationMatrix(this);
}
/**
* <code>loadIdentity</code> sets this matrix to the identity matrix.
* Where all values are zero except those along the diagonal which are one.
*
*/
public void loadIdentity() {
m01 = m02 = m10 = m12 = m20 = m21 = 0;
m00 = m11 = m22 = 1;
}
/**
* @return true if this matrix is identity
*/
public boolean isIdentity() {
return (m00 == 1 && m01 == 0 && m02 == 0)
&& (m10 == 0 && m11 == 1 && m12 == 0)
&& (m20 == 0 && m21 == 0 && m22 == 1);
}
/**
* <code>fromAngleAxis</code> sets this matrix4f to the values specified
* by an angle and an axis of rotation. This method creates an object, so
* use fromAngleNormalAxis if your axis is already normalized.
*
* @param angle
* the angle to rotate (in radians).
* @param axis
* the axis of rotation.
*/
public void fromAngleAxis(float angle, Vector3f axis) {
Vector3f normAxis = axis.normalize();
fromAngleNormalAxis(angle, normAxis);
}
/**
* <code>fromAngleNormalAxis</code> sets this matrix4f to the values
* specified by an angle and a normalized axis of rotation.
*
* @param angle
* the angle to rotate (in radians).
* @param axis
* the axis of rotation (already normalized).
*/
public void fromAngleNormalAxis(float angle, Vector3f axis) {
float fCos = FastMath.cos(angle);
float fSin = FastMath.sin(angle);
float fOneMinusCos = ((float) 1.0) - fCos;
float fX2 = axis.x * axis.x;
float fY2 = axis.y * axis.y;
float fZ2 = axis.z * axis.z;
float fXYM = axis.x * axis.y * fOneMinusCos;
float fXZM = axis.x * axis.z * fOneMinusCos;
float fYZM = axis.y * axis.z * fOneMinusCos;
float fXSin = axis.x * fSin;
float fYSin = axis.y * fSin;
float fZSin = axis.z * fSin;
m00 = fX2 * fOneMinusCos + fCos;
m01 = fXYM - fZSin;
m02 = fXZM + fYSin;
m10 = fXYM + fZSin;
m11 = fY2 * fOneMinusCos + fCos;
m12 = fYZM - fXSin;
m20 = fXZM - fYSin;
m21 = fYZM + fXSin;
m22 = fZ2 * fOneMinusCos + fCos;
}
/**
* <code>mult</code> multiplies this matrix by a given matrix. The result
* matrix is returned as a new object. If the given matrix is null, a null
* matrix is returned.
*
* @param mat
* the matrix to multiply this matrix by.
* @return the result matrix.
*/
public Matrix3f mult(Matrix3f mat) {
return mult(mat, null);
}
/**
* <code>mult</code> multiplies this matrix by a given matrix. The result
* matrix is returned as a new object.
*
* @param mat
* the matrix to multiply this matrix by.
* @param product
* the matrix to store the result in. if null, a new matrix3f is
* created. It is safe for mat and product to be the same object.
* @return a matrix3f object containing the result of this operation
*/
public Matrix3f mult(Matrix3f mat, Matrix3f product) {
float temp00, temp01, temp02;
float temp10, temp11, temp12;
float temp20, temp21, temp22;
if (product == null) {
product = new Matrix3f();
}
temp00 = m00 * mat.m00 + m01 * mat.m10 + m02 * mat.m20;
temp01 = m00 * mat.m01 + m01 * mat.m11 + m02 * mat.m21;
temp02 = m00 * mat.m02 + m01 * mat.m12 + m02 * mat.m22;
temp10 = m10 * mat.m00 + m11 * mat.m10 + m12 * mat.m20;
temp11 = m10 * mat.m01 + m11 * mat.m11 + m12 * mat.m21;
temp12 = m10 * mat.m02 + m11 * mat.m12 + m12 * mat.m22;
temp20 = m20 * mat.m00 + m21 * mat.m10 + m22 * mat.m20;
temp21 = m20 * mat.m01 + m21 * mat.m11 + m22 * mat.m21;
temp22 = m20 * mat.m02 + m21 * mat.m12 + m22 * mat.m22;
product.m00 = temp00;
product.m01 = temp01;
product.m02 = temp02;
product.m10 = temp10;
product.m11 = temp11;
product.m12 = temp12;
product.m20 = temp20;
product.m21 = temp21;
product.m22 = temp22;
return product;
}
/**
* <code>mult</code> multiplies this matrix by a given
* <code>Vector3f</code> object. The result vector is returned. If the
* given vector is null, null will be returned.
*
* @param vec
* the vector to multiply this matrix by.
* @return the result vector.
*/
public Vector3f mult(Vector3f vec) {
return mult(vec, null);
}
/**
* Multiplies this 3x3 matrix by the 1x3 Vector vec and stores the result in
* product.
*
* @param vec
* The Vector3f to multiply.
* @param product
* The Vector3f to store the result, it is safe for this to be
* the same as vec.
* @return The given product vector.
*/
public Vector3f mult(Vector3f vec, Vector3f product) {
if (null == product) {
product = new Vector3f();
}
float x = vec.x;
float y = vec.y;
float z = vec.z;
product.x = m00 * x + m01 * y + m02 * z;
product.y = m10 * x + m11 * y + m12 * z;
product.z = m20 * x + m21 * y + m22 * z;
return product;
}
/**
* <code>multLocal</code> multiplies this matrix internally by
* a given float scale factor.
*
* @param scale
* the value to scale by.
* @return this Matrix3f
*/
public Matrix3f multLocal(float scale) {
m00 *= scale;
m01 *= scale;
m02 *= scale;
m10 *= scale;
m11 *= scale;
m12 *= scale;
m20 *= scale;
m21 *= scale;
m22 *= scale;
return this;
}
/**
* <code>multLocal</code> multiplies this matrix by a given
* <code>Vector3f</code> object. The result vector is stored inside the
* passed vector, then returned . If the given vector is null, null will be
* returned.
*
* @param vec
* the vector to multiply this matrix by.
* @return The passed vector after multiplication
*/
public Vector3f multLocal(Vector3f vec) {
if (vec == null) {
return null;
}
float x = vec.x;
float y = vec.y;
vec.x = m00 * x + m01 * y + m02 * vec.z;
vec.y = m10 * x + m11 * y + m12 * vec.z;
vec.z = m20 * x + m21 * y + m22 * vec.z;
return vec;
}
/**
* <code>mult</code> multiplies this matrix by a given matrix. The result
* matrix is saved in the current matrix. If the given matrix is null,
* nothing happens. The current matrix is returned. This is equivalent to
* this*=mat
*
* @param mat
* the matrix to multiply this matrix by.
* @return This matrix, after the multiplication
*/
public Matrix3f multLocal(Matrix3f mat) {
return mult(mat, this);
}
/**
* Transposes this matrix in place. Returns this matrix for chaining
*
* @return This matrix after transpose
*/
public Matrix3f transposeLocal() {
// float[] tmp = new float[9];
// get(tmp, false);
// set(tmp, true);
float tmp = m01;
m01 = m10;
m10 = tmp;
tmp = m02;
m02 = m20;
m20 = tmp;
tmp = m12;
m12 = m21;
m21 = tmp;
return this;
}
/**
* Inverts this matrix as a new Matrix3f.
*
* @return The new inverse matrix
*/
public Matrix3f invert() {
return invert(null);
}
/**
* Inverts this matrix and stores it in the given store.
*
* @return The store
*/
public Matrix3f invert(Matrix3f store) {
if (store == null) {
store = new Matrix3f();
}
float det = determinant();
if (FastMath.abs(det) <= FastMath.FLT_EPSILON) {
return store.zero();
}
store.m00 = m11 * m22 - m12 * m21;
store.m01 = m02 * m21 - m01 * m22;
store.m02 = m01 * m12 - m02 * m11;
store.m10 = m12 * m20 - m10 * m22;
store.m11 = m00 * m22 - m02 * m20;
store.m12 = m02 * m10 - m00 * m12;
store.m20 = m10 * m21 - m11 * m20;
store.m21 = m01 * m20 - m00 * m21;
store.m22 = m00 * m11 - m01 * m10;
store.multLocal(1f / det);
return store;
}
/**
* Inverts this matrix locally.
*
* @return this
*/
public Matrix3f invertLocal() {
float det = determinant();
if (FastMath.abs(det) <= 0f) {
return zero();
}
float f00 = m11 * m22 - m12 * m21;
float f01 = m02 * m21 - m01 * m22;
float f02 = m01 * m12 - m02 * m11;
float f10 = m12 * m20 - m10 * m22;
float f11 = m00 * m22 - m02 * m20;
float f12 = m02 * m10 - m00 * m12;
float f20 = m10 * m21 - m11 * m20;
float f21 = m01 * m20 - m00 * m21;
float f22 = m00 * m11 - m01 * m10;
m00 = f00;
m01 = f01;
m02 = f02;
m10 = f10;
m11 = f11;
m12 = f12;
m20 = f20;
m21 = f21;
m22 = f22;
multLocal(1f / det);
return this;
}
/**
* Returns a new matrix representing the adjoint of this matrix.
*
* @return The adjoint matrix
*/
public Matrix3f adjoint() {
return adjoint(null);
}
/**
* Places the adjoint of this matrix in store (creates store if null.)
*
* @param store
* The matrix to store the result in. If null, a new matrix is created.
* @return store
*/
public Matrix3f adjoint(Matrix3f store) {
if (store == null) {
store = new Matrix3f();
}
store.m00 = m11 * m22 - m12 * m21;
store.m01 = m02 * m21 - m01 * m22;
store.m02 = m01 * m12 - m02 * m11;
store.m10 = m12 * m20 - m10 * m22;
store.m11 = m00 * m22 - m02 * m20;
store.m12 = m02 * m10 - m00 * m12;
store.m20 = m10 * m21 - m11 * m20;
store.m21 = m01 * m20 - m00 * m21;
store.m22 = m00 * m11 - m01 * m10;
return store;
}
/**
* <code>determinant</code> generates the determinant of this matrix.
*
* @return the determinant
*/
public float determinant() {
float fCo00 = m11 * m22 - m12 * m21;
float fCo10 = m12 * m20 - m10 * m22;
float fCo20 = m10 * m21 - m11 * m20;
float fDet = m00 * fCo00 + m01 * fCo10 + m02 * fCo20;
return fDet;
}
/**
* Sets all of the values in this matrix to zero.
*
* @return this matrix
*/
public Matrix3f zero() {
m00 = m01 = m02 = m10 = m11 = m12 = m20 = m21 = m22 = 0.0f;
return this;
}
/**
* <code>transpose</code> <b>locally</b> transposes this Matrix.
* This is inconsistent with general value vs local semantics, but is
* preserved for backwards compatibility. Use transposeNew() to transpose
* to a new object (value).
*
* @return this object for chaining.
*/
public Matrix3f transpose() {
return transposeLocal();
}
/**
* <code>transposeNew</code> returns a transposed version of this matrix.
*
* @return The new Matrix3f object.
*/
public Matrix3f transposeNew() {
Matrix3f ret = new Matrix3f(m00, m10, m20, m01, m11, m21, m02, m12, m22);
return ret;
}
/**
* <code>toString</code> returns the string representation of this object.
* It is in a format of a 3x3 matrix. For example, an identity matrix would
* be represented by the following string. com.jme.math.Matrix3f <br>[<br>
* 1.0 0.0 0.0 <br>
* 0.0 1.0 0.0 <br>
* 0.0 0.0 1.0 <br>]<br>
*
* @return the string representation of this object.
*/
@Override
public String toString() {
StringBuilder result = new StringBuilder("Matrix3f\n[\n");
result.append(" ");
result.append(m00);
result.append(" ");
result.append(m01);
result.append(" ");
result.append(m02);
result.append(" \n");
result.append(" ");
result.append(m10);
result.append(" ");
result.append(m11);
result.append(" ");
result.append(m12);
result.append(" \n");
result.append(" ");
result.append(m20);
result.append(" ");
result.append(m21);
result.append(" ");
result.append(m22);
result.append(" \n]");
return result.toString();
}
/**
*
* <code>hashCode</code> returns the hash code value as an integer and is
* supported for the benefit of hashing based collection classes such as
* Hashtable, HashMap, HashSet etc.
*
* @return the hashcode for this instance of Matrix4f.
* @see java.lang.Object#hashCode()
*/
@Override
public int hashCode() {
int hash = 37;
hash = 37 * hash + Float.floatToIntBits(m00);
hash = 37 * hash + Float.floatToIntBits(m01);
hash = 37 * hash + Float.floatToIntBits(m02);
hash = 37 * hash + Float.floatToIntBits(m10);
hash = 37 * hash + Float.floatToIntBits(m11);
hash = 37 * hash + Float.floatToIntBits(m12);
hash = 37 * hash + Float.floatToIntBits(m20);
hash = 37 * hash + Float.floatToIntBits(m21);
hash = 37 * hash + Float.floatToIntBits(m22);
return hash;
}
/**
* are these two matrices the same? they are is they both have the same mXX values.
*
* @param o
* the object to compare for equality
* @return true if they are equal
*/
@Override
public boolean equals(Object o) {
if (!(o instanceof Matrix3f) || o == null) {
return false;
}
if (this == o) {
return true;
}
Matrix3f comp = (Matrix3f) o;
if (Float.compare(m00, comp.m00) != 0) {
return false;
}
if (Float.compare(m01, comp.m01) != 0) {
return false;
}
if (Float.compare(m02, comp.m02) != 0) {
return false;
}
if (Float.compare(m10, comp.m10) != 0) {
return false;
}
if (Float.compare(m11, comp.m11) != 0) {
return false;
}
if (Float.compare(m12, comp.m12) != 0) {
return false;
}
if (Float.compare(m20, comp.m20) != 0) {
return false;
}
if (Float.compare(m21, comp.m21) != 0) {
return false;
}
if (Float.compare(m22, comp.m22) != 0) {
return false;
}
return true;
}
public void write(JmeExporter e) throws IOException {
OutputCapsule cap = e.getCapsule(this);
cap.write(m00, "m00", 1);
cap.write(m01, "m01", 0);
cap.write(m02, "m02", 0);
cap.write(m10, "m10", 0);
cap.write(m11, "m11", 1);
cap.write(m12, "m12", 0);
cap.write(m20, "m20", 0);
cap.write(m21, "m21", 0);
cap.write(m22, "m22", 1);
}
public void read(JmeImporter e) throws IOException {
InputCapsule cap = e.getCapsule(this);
m00 = cap.readFloat("m00", 1);
m01 = cap.readFloat("m01", 0);
m02 = cap.readFloat("m02", 0);
m10 = cap.readFloat("m10", 0);
m11 = cap.readFloat("m11", 1);
m12 = cap.readFloat("m12", 0);
m20 = cap.readFloat("m20", 0);
m21 = cap.readFloat("m21", 0);
m22 = cap.readFloat("m22", 1);
}
/**
* A function for creating a rotation matrix that rotates a vector called
* "start" into another vector called "end".
*
* @param start
* normalized non-zero starting vector
* @param end
* normalized non-zero ending vector
* @see "Tomas M�ller, John Hughes \"Efficiently Building a Matrix to Rotate \
* One Vector to Another\" Journal of Graphics Tools, 4(4):1-4, 1999"
*/
public void fromStartEndVectors(Vector3f start, Vector3f end) {
Vector3f v = new Vector3f();
float e, h, f;
start.cross(end, v);
e = start.dot(end);
f = (e < 0) ? -e : e;
// if "from" and "to" vectors are nearly parallel
if (f > 1.0f - FastMath.ZERO_TOLERANCE) {
Vector3f u = new Vector3f();
Vector3f x = new Vector3f();
float c1, c2, c3; /* coefficients for later use */
int i, j;
x.x = (start.x > 0.0) ? start.x : -start.x;
x.y = (start.y > 0.0) ? start.y : -start.y;
x.z = (start.z > 0.0) ? start.z : -start.z;
if (x.x < x.y) {
if (x.x < x.z) {
x.x = 1.0f;
x.y = x.z = 0.0f;
} else {
x.z = 1.0f;
x.x = x.y = 0.0f;
}
} else {
if (x.y < x.z) {
x.y = 1.0f;
x.x = x.z = 0.0f;
} else {
x.z = 1.0f;
x.x = x.y = 0.0f;
}
}
u.x = x.x - start.x;
u.y = x.y - start.y;
u.z = x.z - start.z;
v.x = x.x - end.x;
v.y = x.y - end.y;
v.z = x.z - end.z;
c1 = 2.0f / u.dot(u);
c2 = 2.0f / v.dot(v);
c3 = c1 * c2 * u.dot(v);
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
float val = -c1 * u.get(i) * u.get(j) - c2 * v.get(i)
* v.get(j) + c3 * v.get(i) * u.get(j);
set(i, j, val);
}
float val = get(i, i);
set(i, i, val + 1.0f);
}
} else {
// the most common case, unless "start"="end", or "start"=-"end"
float hvx, hvz, hvxy, hvxz, hvyz;
h = 1.0f / (1.0f + e);
hvx = h * v.x;
hvz = h * v.z;
hvxy = hvx * v.y;
hvxz = hvx * v.z;
hvyz = hvz * v.y;
set(0, 0, e + hvx * v.x);
set(0, 1, hvxy - v.z);
set(0, 2, hvxz + v.y);
set(1, 0, hvxy + v.z);
set(1, 1, e + h * v.y * v.y);
set(1, 2, hvyz - v.x);
set(2, 0, hvxz - v.y);
set(2, 1, hvyz + v.x);
set(2, 2, e + hvz * v.z);
}
}
/**
* <code>scale</code> scales the operation performed by this matrix on a
* per-component basis.
*
* @param scale
* The scale applied to each of the X, Y and Z output values.
*/
public void scale(Vector3f scale) {
m00 *= scale.x;
m10 *= scale.x;
m20 *= scale.x;
m01 *= scale.y;
m11 *= scale.y;
m21 *= scale.y;
m02 *= scale.z;
m12 *= scale.z;
m22 *= scale.z;
}
static boolean equalIdentity(Matrix3f mat) {
if (Math.abs(mat.m00 - 1) > 1e-4) {
return false;
}
if (Math.abs(mat.m11 - 1) > 1e-4) {
return false;
}
if (Math.abs(mat.m22 - 1) > 1e-4) {
return false;
}
if (Math.abs(mat.m01) > 1e-4) {
return false;
}
if (Math.abs(mat.m02) > 1e-4) {
return false;
}
if (Math.abs(mat.m10) > 1e-4) {
return false;
}
if (Math.abs(mat.m12) > 1e-4) {
return false;
}
if (Math.abs(mat.m20) > 1e-4) {
return false;
}
if (Math.abs(mat.m21) > 1e-4) {
return false;
}
return true;
}
@Override
public Matrix3f clone() {
try {
return (Matrix3f) super.clone();
} catch (CloneNotSupportedException e) {
throw new AssertionError(); // can not happen
}
}
}