/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet.control;
import com.jme3.animation.AnimControl;
import com.jme3.animation.Bone;
import com.jme3.animation.Skeleton;
import com.jme3.animation.SkeletonControl;
import com.jme3.bullet.PhysicsSpace;
import com.jme3.bullet.collision.PhysicsCollisionEvent;
import com.jme3.bullet.collision.PhysicsCollisionListener;
import com.jme3.bullet.collision.PhysicsCollisionObject;
import com.jme3.bullet.collision.RagdollCollisionListener;
import com.jme3.bullet.collision.shapes.BoxCollisionShape;
import com.jme3.bullet.collision.shapes.HullCollisionShape;
import com.jme3.bullet.control.ragdoll.HumanoidRagdollPreset;
import com.jme3.bullet.control.ragdoll.RagdollPreset;
import com.jme3.bullet.control.ragdoll.RagdollUtils;
import com.jme3.bullet.joints.SixDofJoint;
import com.jme3.bullet.objects.PhysicsRigidBody;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.export.Savable;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.renderer.RenderManager;
import com.jme3.renderer.ViewPort;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.scene.control.Control;
import com.jme3.util.TempVars;
import java.io.IOException;
import java.util.*;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* <strong>This control is still a WIP, use it at your own risk</strong><br> To
* use this control you need a model with an AnimControl and a
* SkeletonControl.<br> This should be the case if you imported an animated
* model from Ogre or blender.<br> Note enabling/disabling the control
* add/removes it from the physic space<br> <p> This control creates collision
* shapes for each bones of the skeleton when you call
* spatial.addControl(ragdollControl). <ul> <li>The shape is HullCollision shape
* based on the vertices associated with each bone and based on a tweakable
* weight threshold (see setWeightThreshold)</li> <li>If you don't want each
* bone to be a collision shape, you can specify what bone to use by using the
* addBoneName method<br> By using this method, bone that are not used to create
* a shape, are "merged" to their parent to create the collision shape. </li>
* </ul> </p> <p> There are 2 modes for this control : <ul> <li><strong>The
* kinematic modes :</strong><br> this is the default behavior, this means that
* the collision shapes of the body are able to interact with physics enabled
* objects. in this mode physic shapes follow the moovements of the animated
* skeleton (for example animated by a key framed animation) this mode is
* enabled by calling setKinematicMode(); </li> <li><strong>The ragdoll modes
* :</strong><br> To enable this behavior, you need to call setRagdollMode()
* method. In this mode the charater is entirely controled by physics, so it
* will fall under the gravity and move if any force is applied to it. </li>
* </ul> </p>
*
* @author Normen Hansen and Rémy Bouquet (Nehon)
*/
public class KinematicRagdollControl extends AbstractPhysicsControl implements PhysicsCollisionListener {
protected static final Logger logger = Logger.getLogger(KinematicRagdollControl.class.getName());
protected List<RagdollCollisionListener> listeners;
protected final Set<String> boneList = new TreeSet<String>();
protected final Map<String, PhysicsBoneLink> boneLinks = new HashMap<String, PhysicsBoneLink>();
protected final Vector3f modelPosition = new Vector3f();
protected final Quaternion modelRotation = new Quaternion();
protected final PhysicsRigidBody baseRigidBody;
protected Spatial targetModel;
protected Skeleton skeleton;
protected RagdollPreset preset = new HumanoidRagdollPreset();
protected Vector3f initScale;
protected Mode mode = Mode.Kinematic;
protected boolean debug = false;
protected boolean blendedControl = false;
protected float weightThreshold = -1.0f;
protected float blendStart = 0.0f;
protected float blendTime = 1.0f;
protected float eventDispatchImpulseThreshold = 10;
protected float rootMass = 15;
protected float totalMass = 0;
public static enum Mode {
Kinematic,
Ragdoll
}
public class PhysicsBoneLink implements Savable {
protected PhysicsRigidBody rigidBody;
protected Bone bone;
protected SixDofJoint joint;
protected Quaternion initalWorldRotation;
protected Quaternion startBlendingRot = new Quaternion();
protected Vector3f startBlendingPos = new Vector3f();
public PhysicsBoneLink() {
}
public Bone getBone() {
return bone;
}
public PhysicsRigidBody getRigidBody() {
return rigidBody;
}
public void write(JmeExporter ex) throws IOException {
OutputCapsule oc = ex.getCapsule(this);
oc.write(rigidBody, "rigidBody", null);
oc.write(bone, "bone", null);
oc.write(joint, "joint", null);
oc.write(initalWorldRotation, "initalWorldRotation", null);
oc.write(startBlendingRot, "startBlendingRot", new Quaternion());
oc.write(startBlendingPos, "startBlendingPos", new Vector3f());
}
public void read(JmeImporter im) throws IOException {
InputCapsule ic = im.getCapsule(this);
rigidBody = (PhysicsRigidBody) ic.readSavable("rigidBody", null);
bone = (Bone) ic.readSavable("bone", null);
joint = (SixDofJoint) ic.readSavable("joint", null);
initalWorldRotation = (Quaternion) ic.readSavable("initalWorldRotation", null);
startBlendingRot = (Quaternion) ic.readSavable("startBlendingRot", null);
startBlendingPos = (Vector3f) ic.readSavable("startBlendingPos", null);
}
}
/**
* contruct a KinematicRagdollControl
*/
public KinematicRagdollControl() {
baseRigidBody = new PhysicsRigidBody(new BoxCollisionShape(Vector3f.UNIT_XYZ.mult(0.1f)), 1);
baseRigidBody.setKinematic(mode == Mode.Kinematic);
}
public KinematicRagdollControl(float weightThreshold) {
this();
this.weightThreshold = weightThreshold;
}
public KinematicRagdollControl(RagdollPreset preset, float weightThreshold) {
this();
this.preset = preset;
this.weightThreshold = weightThreshold;
}
public KinematicRagdollControl(RagdollPreset preset) {
this();
this.preset = preset;
}
public void update(float tpf) {
if (!enabled) {
return;
}
//if the ragdoll has the control of the skeleton, we update each bone with its position in physic world space.
if (mode == mode.Ragdoll && targetModel.getLocalTranslation().equals(modelPosition)) {
ragDollUpdate(tpf);
} else {
kinematicUpdate(tpf);
}
}
protected void ragDollUpdate(float tpf) {
TempVars vars = TempVars.get();
Quaternion tmpRot1 = vars.quat1;
Quaternion tmpRot2 = vars.quat2;
for (PhysicsBoneLink link : boneLinks.values()) {
Vector3f position = vars.vect1;
//retrieving bone position in physic world space
Vector3f p = link.rigidBody.getMotionState().getWorldLocation();
//transforming this position with inverse transforms of the model
targetModel.getWorldTransform().transformInverseVector(p, position);
//retrieving bone rotation in physic world space
Quaternion q = link.rigidBody.getMotionState().getWorldRotationQuat();
//multiplying this rotation by the initialWorld rotation of the bone,
//then transforming it with the inverse world rotation of the model
tmpRot1.set(q).multLocal(link.initalWorldRotation);
tmpRot2.set(targetModel.getWorldRotation()).inverseLocal().mult(tmpRot1, tmpRot1);
tmpRot1.normalizeLocal();
//if the bone is the root bone, we apply the physic's transform to the model, so its position and rotation are correctly updated
if (link.bone.getParent() == null) {
//offsetting the physic's position/rotation by the root bone inverse model space position/rotaion
modelPosition.set(p).subtractLocal(link.bone.getWorldBindPosition());
targetModel.getParent().getWorldTransform().transformInverseVector(modelPosition, modelPosition);
modelRotation.set(q).multLocal(tmpRot2.set(link.bone.getWorldBindRotation()).inverseLocal());
//applying transforms to the model
targetModel.setLocalTranslation(modelPosition);
targetModel.setLocalRotation(modelRotation);
//Applying computed transforms to the bone
link.bone.setUserTransformsWorld(position, tmpRot1);
} else {
//if boneList is empty, this means that every bone in the ragdoll has a collision shape,
//so we just update the bone position
if (boneList.isEmpty()) {
link.bone.setUserTransformsWorld(position, tmpRot1);
} else {
//boneList is not empty, this means some bones of the skeleton might not be associated with a collision shape.
//So we update them recusively
RagdollUtils.setTransform(link.bone, position, tmpRot1, false, boneList);
}
}
}
vars.release();
}
protected void kinematicUpdate(float tpf) {
//the ragdoll does not have the controll, so the keyframed animation updates the physic position of the physic bonces
TempVars vars = TempVars.get();
Quaternion tmpRot1 = vars.quat1;
Quaternion tmpRot2 = vars.quat2;
Vector3f position = vars.vect1;
for (PhysicsBoneLink link : boneLinks.values()) {
//if blended control this means, keyframed animation is updating the skeleton,
//but to allow smooth transition, we blend this transformation with the saved position of the ragdoll
if (blendedControl) {
Vector3f position2 = vars.vect2;
//initializing tmp vars with the start position/rotation of the ragdoll
position.set(link.startBlendingPos);
tmpRot1.set(link.startBlendingRot);
//interpolating between ragdoll position/rotation and keyframed position/rotation
tmpRot2.set(tmpRot1).nlerp(link.bone.getModelSpaceRotation(), blendStart / blendTime);
position2.set(position).interpolateLocal(link.bone.getModelSpacePosition(), blendStart / blendTime);
tmpRot1.set(tmpRot2);
position.set(position2);
//updating bones transforms
if (boneList.isEmpty()) {
//we ensure we have the control to update the bone
link.bone.setUserControl(true);
link.bone.setUserTransformsWorld(position, tmpRot1);
//we give control back to the key framed animation.
link.bone.setUserControl(false);
} else {
RagdollUtils.setTransform(link.bone, position, tmpRot1, true, boneList);
}
}
//setting skeleton transforms to the ragdoll
matchPhysicObjectToBone(link, position, tmpRot1);
modelPosition.set(targetModel.getLocalTranslation());
}
//time control for blending
if (blendedControl) {
blendStart += tpf;
if (blendStart > blendTime) {
blendedControl = false;
}
}
vars.release();
}
/**
* Set the transforms of a rigidBody to match the transforms of a bone. this
* is used to make the ragdoll follow the skeleton motion while in Kinematic
* mode
*
* @param link the link containing the bone and the rigidBody
* @param position just a temp vector for position
* @param tmpRot1 just a temp quaternion for rotation
*/
protected void matchPhysicObjectToBone(PhysicsBoneLink link, Vector3f position, Quaternion tmpRot1) {
//computing position from rotation and scale
targetModel.getWorldTransform().transformVector(link.bone.getModelSpacePosition(), position);
//computing rotation
tmpRot1.set(link.bone.getModelSpaceRotation()).multLocal(link.bone.getWorldBindInverseRotation());
targetModel.getWorldRotation().mult(tmpRot1, tmpRot1);
tmpRot1.normalizeLocal();
//updating physic location/rotation of the physic bone
link.rigidBody.setPhysicsLocation(position);
link.rigidBody.setPhysicsRotation(tmpRot1);
}
/**
* rebuild the ragdoll this is useful if you applied scale on the ragdoll
* after it's been initialized, same as reattaching.
*/
public void reBuild() {
if (spatial == null) {
return;
}
removeSpatialData(spatial);
createSpatialData(spatial);
}
@Override
protected void createSpatialData(Spatial model) {
targetModel = model;
Node parent = model.getParent();
Vector3f initPosition = model.getLocalTranslation().clone();
Quaternion initRotation = model.getLocalRotation().clone();
initScale = model.getLocalScale().clone();
model.removeFromParent();
model.setLocalTranslation(Vector3f.ZERO);
model.setLocalRotation(Quaternion.IDENTITY);
model.setLocalScale(1);
//HACK ALERT change this
//I remove the skeletonControl and readd it to the spatial to make sure it's after the ragdollControl in the stack
//Find a proper way to order the controls.
SkeletonControl sc = model.getControl(SkeletonControl.class);
model.removeControl(sc);
model.addControl(sc);
// put into bind pose and compute bone transforms in model space
// maybe dont reset to ragdoll out of animations?
scanSpatial(model);
if (parent != null) {
parent.attachChild(model);
}
model.setLocalTranslation(initPosition);
model.setLocalRotation(initRotation);
model.setLocalScale(initScale);
if (added) {
addPhysics(space);
}
logger.log(Level.FINE, "Created physics ragdoll for skeleton {0}", skeleton);
}
@Override
protected void removeSpatialData(Spatial spat) {
if (added) {
removePhysics(space);
}
boneLinks.clear();
}
/**
* Add a bone name to this control Using this method you can specify which
* bones of the skeleton will be used to build the collision shapes.
*
* @param name
*/
public void addBoneName(String name) {
boneList.add(name);
}
protected void scanSpatial(Spatial model) {
AnimControl animControl = model.getControl(AnimControl.class);
Map<Integer, List<Float>> pointsMap = null;
if (weightThreshold == -1.0f) {
pointsMap = RagdollUtils.buildPointMap(model);
}
skeleton = animControl.getSkeleton();
skeleton.resetAndUpdate();
for (int i = 0; i < skeleton.getRoots().length; i++) {
Bone childBone = skeleton.getRoots()[i];
if (childBone.getParent() == null) {
logger.log(Level.FINE, "Found root bone in skeleton {0}", skeleton);
boneRecursion(model, childBone, baseRigidBody, 1, pointsMap);
}
}
}
protected void boneRecursion(Spatial model, Bone bone, PhysicsRigidBody parent, int reccount, Map<Integer, List<Float>> pointsMap) {
PhysicsRigidBody parentShape = parent;
if (boneList.isEmpty() || boneList.contains(bone.getName())) {
PhysicsBoneLink link = new PhysicsBoneLink();
link.bone = bone;
//creating the collision shape
HullCollisionShape shape = null;
if (pointsMap != null) {
//build a shape for the bone, using the vertices that are most influenced by this bone
shape = RagdollUtils.makeShapeFromPointMap(pointsMap, RagdollUtils.getBoneIndices(link.bone, skeleton, boneList), initScale, link.bone.getModelSpacePosition());
} else {
//build a shape for the bone, using the vertices associated with this bone with a weight above the threshold
shape = RagdollUtils.makeShapeFromVerticeWeights(model, RagdollUtils.getBoneIndices(link.bone, skeleton, boneList), initScale, link.bone.getModelSpacePosition(), weightThreshold);
}
PhysicsRigidBody shapeNode = new PhysicsRigidBody(shape, rootMass / (float) reccount);
shapeNode.setKinematic(mode == Mode.Kinematic);
totalMass += rootMass / (float) reccount;
link.rigidBody = shapeNode;
link.initalWorldRotation = bone.getModelSpaceRotation().clone();
if (parent != null) {
//get joint position for parent
Vector3f posToParent = new Vector3f();
if (bone.getParent() != null) {
bone.getModelSpacePosition().subtract(bone.getParent().getModelSpacePosition(), posToParent).multLocal(initScale);
}
SixDofJoint joint = new SixDofJoint(parent, shapeNode, posToParent, new Vector3f(0, 0, 0f), true);
preset.setupJointForBone(bone.getName(), joint);
link.joint = joint;
joint.setCollisionBetweenLinkedBodys(false);
}
boneLinks.put(bone.getName(), link);
shapeNode.setUserObject(link);
parentShape = shapeNode;
}
for (Iterator<Bone> it = bone.getChildren().iterator(); it.hasNext();) {
Bone childBone = it.next();
boneRecursion(model, childBone, parentShape, reccount + 1, pointsMap);
}
}
/**
* Set the joint limits for the joint between the given bone and its parent.
* This method can't work before attaching the control to a spatial
*
* @param boneName the name of the bone
* @param maxX the maximum rotation on the x axis (in radians)
* @param minX the minimum rotation on the x axis (in radians)
* @param maxY the maximum rotation on the y axis (in radians)
* @param minY the minimum rotation on the z axis (in radians)
* @param maxZ the maximum rotation on the z axis (in radians)
* @param minZ the minimum rotation on the z axis (in radians)
*/
public void setJointLimit(String boneName, float maxX, float minX, float maxY, float minY, float maxZ, float minZ) {
PhysicsBoneLink link = boneLinks.get(boneName);
if (link != null) {
RagdollUtils.setJointLimit(link.joint, maxX, minX, maxY, minY, maxZ, minZ);
} else {
logger.log(Level.WARNING, "Not joint was found for bone {0}. make sure you call spatial.addControl(ragdoll) before setting joints limit", boneName);
}
}
/**
* Return the joint between the given bone and its parent. This return null
* if it's called before attaching the control to a spatial
*
* @param boneName the name of the bone
* @return the joint between the given bone and its parent
*/
public SixDofJoint getJoint(String boneName) {
PhysicsBoneLink link = boneLinks.get(boneName);
if (link != null) {
return link.joint;
} else {
logger.log(Level.WARNING, "Not joint was found for bone {0}. make sure you call spatial.addControl(ragdoll) before setting joints limit", boneName);
return null;
}
}
@Override
protected void setPhysicsLocation(Vector3f vec) {
if (baseRigidBody != null) {
baseRigidBody.setPhysicsLocation(vec);
}
}
@Override
protected void setPhysicsRotation(Quaternion quat) {
if (baseRigidBody != null) {
baseRigidBody.setPhysicsRotation(quat);
}
}
@Override
protected void addPhysics(PhysicsSpace space) {
if (baseRigidBody != null) {
space.add(baseRigidBody);
}
for (Iterator<PhysicsBoneLink> it = boneLinks.values().iterator(); it.hasNext();) {
PhysicsBoneLink physicsBoneLink = it.next();
if (physicsBoneLink.rigidBody != null) {
space.add(physicsBoneLink.rigidBody);
if (physicsBoneLink.joint != null) {
space.add(physicsBoneLink.joint);
}
}
}
space.addCollisionListener(this);
}
@Override
protected void removePhysics(PhysicsSpace space) {
if (baseRigidBody != null) {
space.remove(baseRigidBody);
}
for (Iterator<PhysicsBoneLink> it = boneLinks.values().iterator(); it.hasNext();) {
PhysicsBoneLink physicsBoneLink = it.next();
if (physicsBoneLink.joint != null) {
space.remove(physicsBoneLink.joint);
if (physicsBoneLink.rigidBody != null) {
space.remove(physicsBoneLink.rigidBody);
}
}
}
space.removeCollisionListener(this);
}
/**
* For internal use only callback for collisionevent
*
* @param event
*/
public void collision(PhysicsCollisionEvent event) {
PhysicsCollisionObject objA = event.getObjectA();
PhysicsCollisionObject objB = event.getObjectB();
//excluding collisions that involve 2 parts of the ragdoll
if (event.getNodeA() == null && event.getNodeB() == null) {
return;
}
//discarding low impulse collision
if (event.getAppliedImpulse() < eventDispatchImpulseThreshold) {
return;
}
boolean hit = false;
Bone hitBone = null;
PhysicsCollisionObject hitObject = null;
//Computing which bone has been hit
if (objA.getUserObject() instanceof PhysicsBoneLink) {
PhysicsBoneLink link = (PhysicsBoneLink) objA.getUserObject();
if (link != null) {
hit = true;
hitBone = link.bone;
hitObject = objB;
}
}
if (objB.getUserObject() instanceof PhysicsBoneLink) {
PhysicsBoneLink link = (PhysicsBoneLink) objB.getUserObject();
if (link != null) {
hit = true;
hitBone = link.bone;
hitObject = objA;
}
}
//dispatching the event if the ragdoll has been hit
if (hit && listeners != null) {
for (RagdollCollisionListener listener : listeners) {
listener.collide(hitBone, hitObject, event);
}
}
}
/**
* Enable or disable the ragdoll behaviour. if ragdollEnabled is true, the
* character motion will only be powerd by physics else, the characted will
* be animated by the keyframe animation, but will be able to physically
* interact with its physic environnement
*
* @param ragdollEnabled
*/
protected void setMode(Mode mode) {
this.mode = mode;
AnimControl animControl = targetModel.getControl(AnimControl.class);
animControl.setEnabled(mode == Mode.Kinematic);
baseRigidBody.setKinematic(mode == Mode.Kinematic);
TempVars vars = TempVars.get();
for (PhysicsBoneLink link : boneLinks.values()) {
link.rigidBody.setKinematic(mode == Mode.Kinematic);
if (mode == Mode.Ragdoll) {
Quaternion tmpRot1 = vars.quat1;
Vector3f position = vars.vect1;
//making sure that the ragdoll is at the correct place.
matchPhysicObjectToBone(link, position, tmpRot1);
}
}
vars.release();
for (Bone bone : skeleton.getRoots()) {
RagdollUtils.setUserControl(bone, mode == Mode.Ragdoll);
}
}
/**
* Smoothly blend from Ragdoll mode to Kinematic mode This is useful to
* blend ragdoll actual position to a keyframe animation for example
*
* @param blendTime the blending time between ragdoll to anim.
*/
public void blendToKinematicMode(float blendTime) {
if (mode == Mode.Kinematic) {
return;
}
blendedControl = true;
this.blendTime = blendTime;
mode = Mode.Kinematic;
AnimControl animControl = targetModel.getControl(AnimControl.class);
animControl.setEnabled(true);
TempVars vars = TempVars.get();
for (PhysicsBoneLink link : boneLinks.values()) {
Vector3f p = link.rigidBody.getMotionState().getWorldLocation();
Vector3f position = vars.vect1;
targetModel.getWorldTransform().transformInverseVector(p, position);
Quaternion q = link.rigidBody.getMotionState().getWorldRotationQuat();
Quaternion q2 = vars.quat1;
Quaternion q3 = vars.quat2;
q2.set(q).multLocal(link.initalWorldRotation).normalizeLocal();
q3.set(targetModel.getWorldRotation()).inverseLocal().mult(q2, q2);
q2.normalizeLocal();
link.startBlendingPos.set(position);
link.startBlendingRot.set(q2);
link.rigidBody.setKinematic(true);
}
vars.release();
for (Bone bone : skeleton.getRoots()) {
RagdollUtils.setUserControl(bone, false);
}
blendStart = 0;
}
/**
* Set the control into Kinematic mode In theis mode, the collision shapes
* follow the movements of the skeleton, and can interact with physical
* environement
*/
public void setKinematicMode() {
if (mode != Mode.Kinematic) {
setMode(Mode.Kinematic);
}
}
/**
* Sets the control into Ragdoll mode The skeleton is entirely controlled by
* physics.
*/
public void setRagdollMode() {
if (mode != Mode.Ragdoll) {
setMode(Mode.Ragdoll);
}
}
/**
* retruns the mode of this control
*
* @return
*/
public Mode getMode() {
return mode;
}
/**
* add a
*
* @param listener
*/
public void addCollisionListener(RagdollCollisionListener listener) {
if (listeners == null) {
listeners = new ArrayList<RagdollCollisionListener>();
}
listeners.add(listener);
}
public void setRootMass(float rootMass) {
this.rootMass = rootMass;
}
public float getTotalMass() {
return totalMass;
}
public float getWeightThreshold() {
return weightThreshold;
}
public void setWeightThreshold(float weightThreshold) {
this.weightThreshold = weightThreshold;
}
public float getEventDispatchImpulseThreshold() {
return eventDispatchImpulseThreshold;
}
public void setEventDispatchImpulseThreshold(float eventDispatchImpulseThreshold) {
this.eventDispatchImpulseThreshold = eventDispatchImpulseThreshold;
}
/**
* Set the CcdMotionThreshold of all the bone's rigidBodies of the ragdoll
*
* @see PhysicsRigidBody#setCcdMotionThreshold(float)
* @param value
*/
public void setCcdMotionThreshold(float value) {
for (PhysicsBoneLink link : boneLinks.values()) {
link.rigidBody.setCcdMotionThreshold(value);
}
}
/**
* Set the CcdSweptSphereRadius of all the bone's rigidBodies of the ragdoll
*
* @see PhysicsRigidBody#setCcdSweptSphereRadius(float)
* @param value
*/
public void setCcdSweptSphereRadius(float value) {
for (PhysicsBoneLink link : boneLinks.values()) {
link.rigidBody.setCcdSweptSphereRadius(value);
}
}
/**
* return the rigidBody associated to the given bone
*
* @param boneName the name of the bone
* @return the associated rigidBody.
*/
public PhysicsRigidBody getBoneRigidBody(String boneName) {
PhysicsBoneLink link = boneLinks.get(boneName);
if (link != null) {
return link.rigidBody;
}
return null;
}
/**
* For internal use only specific render for the ragdoll(if debugging)
*
* @param rm
* @param vp
*/
@Override
public void render(RenderManager rm, ViewPort vp) {
}
public Control cloneForSpatial(Spatial spatial) {
KinematicRagdollControl control = new KinematicRagdollControl(preset, weightThreshold);
control.setMode(mode);
control.setRootMass(rootMass);
control.setWeightThreshold(weightThreshold);
control.setApplyPhysicsLocal(applyLocal);
return control;
}
/**
* serialize this control
*
* @param ex
* @throws IOException
*/
@Override
public void write(JmeExporter ex) throws IOException {
super.write(ex);
OutputCapsule oc = ex.getCapsule(this);
oc.write(boneList.toArray(new String[boneList.size()]), "boneList", new String[0]);
oc.write(boneLinks.values().toArray(new PhysicsBoneLink[boneLinks.size()]), "boneLinks", new PhysicsBoneLink[0]);
oc.write(modelPosition, "modelPosition", new Vector3f());
oc.write(modelRotation, "modelRotation", new Quaternion());
oc.write(targetModel, "targetModel", null);
oc.write(skeleton, "skeleton", null);
// oc.write(preset, "preset", null);//TODO
oc.write(initScale, "initScale", null);
oc.write(mode, "mode", null);
oc.write(blendedControl, "blendedControl", false);
oc.write(weightThreshold, "weightThreshold", -1.0f);
oc.write(blendStart, "blendStart", 0.0f);
oc.write(blendTime, "blendTime", 1.0f);
oc.write(eventDispatchImpulseThreshold, "eventDispatchImpulseThreshold", 10);
oc.write(rootMass, "rootMass", 15);
oc.write(totalMass, "totalMass", 0);
}
/**
* de-serialize this control
*
* @param im
* @throws IOException
*/
@Override
public void read(JmeImporter im) throws IOException {
super.read(im);
InputCapsule ic = im.getCapsule(this);
String[] loadedBoneList = ic.readStringArray("boneList", new String[0]);
boneList.addAll(Arrays.asList(loadedBoneList));
PhysicsBoneLink[] loadedBoneLinks = (PhysicsBoneLink[]) ic.readSavableArray("boneList", new PhysicsBoneLink[0]);
for (PhysicsBoneLink physicsBoneLink : loadedBoneLinks) {
boneLinks.put(physicsBoneLink.bone.getName(), physicsBoneLink);
}
modelPosition.set((Vector3f) ic.readSavable("modelPosition", new Vector3f()));
modelRotation.set((Quaternion) ic.readSavable("modelRotation", new Quaternion()));
targetModel = (Spatial) ic.readSavable("targetModel", null);
skeleton = (Skeleton) ic.readSavable("skeleton", null);
// preset //TODO
initScale = (Vector3f) ic.readSavable("initScale", null);
mode = ic.readEnum("mode", Mode.class, Mode.Kinematic);
blendedControl = ic.readBoolean("blendedControl", false);
weightThreshold = ic.readFloat("weightThreshold", -1.0f);
blendStart = ic.readFloat("blendStart", 0.0f);
blendTime = ic.readFloat("blendTime", 1.0f);
eventDispatchImpulseThreshold = ic.readFloat("eventDispatchImpulseThreshold", 10);
rootMass = ic.readFloat("rootMass", 15);
totalMass = ic.readFloat("totalMass", 0);
}
}