/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet.control;
import com.jme3.bullet.PhysicsSpace;
import com.jme3.bullet.PhysicsTickListener;
import com.jme3.bullet.collision.PhysicsRayTestResult;
import com.jme3.bullet.collision.shapes.CapsuleCollisionShape;
import com.jme3.bullet.collision.shapes.CollisionShape;
import com.jme3.bullet.collision.shapes.CompoundCollisionShape;
import com.jme3.bullet.objects.PhysicsRigidBody;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.math.FastMath;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.renderer.RenderManager;
import com.jme3.renderer.ViewPort;
import com.jme3.scene.Spatial;
import com.jme3.scene.control.Control;
import com.jme3.util.TempVars;
import java.io.IOException;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* This is intended to be a replacement for the internal bullet character class.
* A RigidBody with cylinder collision shape is used and its velocity is set
* continuously, a ray test is used to check if the character is on the ground.
*
* The character keeps his own local coordinate system which adapts based on the
* gravity working on the character so the character will always stand upright.
*
* Forces in the local x/z plane are dampened while those in the local y
* direction are applied fully (e.g. jumping, falling).
*
* @author normenhansen
*/
public class BetterCharacterControl extends AbstractPhysicsControl implements PhysicsTickListener {
protected static final Logger logger = Logger.getLogger(BetterCharacterControl.class.getName());
protected PhysicsRigidBody rigidBody;
protected float radius;
protected float height;
protected float mass;
protected float duckedFactor = 0.6f;
/**
* Local up direction, derived from gravity.
*/
protected final Vector3f localUp = new Vector3f(0, 1, 0);
/**
* Local absolute z-forward direction, derived from gravity and UNIT_Z,
* updated continuously when gravity changes.
*/
protected final Vector3f localForward = new Vector3f(0, 0, 1);
/**
* Local left direction, derived from up and forward.
*/
protected final Vector3f localLeft = new Vector3f(1, 0, 0);
/**
* Local z-forward quaternion for the "local absolute" z-forward direction.
*/
protected final Quaternion localForwardRotation = new Quaternion(Quaternion.DIRECTION_Z);
/**
* Is a z-forward vector based on the view direction and the current local
* x/z plane.
*/
protected final Vector3f viewDirection = new Vector3f(0, 0, 1);
/**
* Stores final spatial location, corresponds to RigidBody location.
*/
protected final Vector3f location = new Vector3f();
/**
* Stores final spatial rotation, is a z-forward rotation based on the view
* direction and the current local x/z plane. See also rotatedViewDirection.
*/
protected final Quaternion rotation = new Quaternion(Quaternion.DIRECTION_Z);
protected final Vector3f rotatedViewDirection = new Vector3f(0, 0, 1);
protected final Vector3f walkDirection = new Vector3f();
protected final Vector3f jumpForce;
protected float physicsDamping = 0.9f;
protected final Vector3f scale = new Vector3f(1, 1, 1);
protected final Vector3f velocity = new Vector3f();
protected boolean jump = false;
protected boolean onGround = false;
protected boolean ducked = false;
protected boolean wantToUnDuck = false;
/**
* Only used for serialization, do not use this constructor.
*/
public BetterCharacterControl() {
jumpForce = new Vector3f();
}
/**
* Creates a new character with the given properties. Note that to avoid
* issues the final height when ducking should be larger than 2x radius. The
* jumpForce will be set to an upwards force of 5x mass.
*
* @param radius
* @param height
* @param mass
*/
public BetterCharacterControl(float radius, float height, float mass) {
this.radius = radius;
this.height = height;
this.mass = mass;
rigidBody = new PhysicsRigidBody(getShape(), mass);
jumpForce = new Vector3f(0, mass * 5, 0);
rigidBody.setAngularFactor(0);
}
@Override
public void update(float tpf) {
super.update(tpf);
rigidBody.getPhysicsLocation(location);
//rotation has been set through viewDirection
applyPhysicsTransform(location, rotation);
}
@Override
public void render(RenderManager rm, ViewPort vp) {
super.render(rm, vp);
}
/**
* Used internally, don't call manually
*
* @param space
* @param tpf
*/
public void prePhysicsTick(PhysicsSpace space, float tpf) {
checkOnGround();
if (wantToUnDuck && checkCanUnDuck()) {
setHeightPercent(1);
wantToUnDuck = false;
ducked = false;
}
TempVars vars = TempVars.get();
// dampen existing x/z forces
float existingLeftVelocity = velocity.dot(localLeft);
float existingForwardVelocity = velocity.dot(localForward);
Vector3f counter = vars.vect1;
existingLeftVelocity = existingLeftVelocity * physicsDamping;
existingForwardVelocity = existingForwardVelocity * physicsDamping;
counter.set(-existingLeftVelocity, 0, -existingForwardVelocity);
localForwardRotation.multLocal(counter);
velocity.addLocal(counter);
float designatedVelocity = walkDirection.length();
if (designatedVelocity > 0) {
Vector3f localWalkDirection = vars.vect1;
//normalize walkdirection
localWalkDirection.set(walkDirection).normalizeLocal();
//check for the existing velocity in the desired direction
float existingVelocity = velocity.dot(localWalkDirection);
//calculate the final velocity in the desired direction
float finalVelocity = designatedVelocity - existingVelocity;
localWalkDirection.multLocal(finalVelocity);
//add resulting vector to existing velocity
velocity.addLocal(localWalkDirection);
}
rigidBody.setLinearVelocity(velocity);
if (jump) {
//TODO: precalculate jump force
Vector3f rotatedJumpForce = vars.vect1;
rotatedJumpForce.set(jumpForce);
rigidBody.applyImpulse(localForwardRotation.multLocal(rotatedJumpForce), Vector3f.ZERO);
jump = false;
}
vars.release();
}
/**
* Used internally, don't call manually
*
* @param space
* @param tpf
*/
public void physicsTick(PhysicsSpace space, float tpf) {
rigidBody.getLinearVelocity(velocity);
}
/**
* Move the character somewhere. Note the character also takes the location
* of any spatial its being attached to in the moment it is attached.
*
* @param vec The new character location.
*/
public void warp(Vector3f vec) {
setPhysicsLocation(vec);
}
/**
* Makes the character jump with the set jump force.
*/
public void jump() {
//TODO: debounce over some frames
if (!onGround) {
return;
}
jump = true;
}
/**
* Set the jump force as a Vector3f. The jump force is local to the
* characters coordinate system, which normally is always z-forward (in
* world coordinates, parent coordinates when set to applyLocalPhysics)
*
* @param jumpForce The new jump force
*/
public void setJumpForce(Vector3f jumpForce) {
this.jumpForce.set(jumpForce);
}
/**
* Gets the current jump force. The default is 5 * character mass in y
* direction.
*
* @return
*/
public Vector3f getJumpForce() {
return jumpForce;
}
/**
* Check if the character is on the ground. This is determined by a ray test
* in the center of the character and might return false even if the
* character is not falling yet.
*
* @return
*/
public boolean isOnGround() {
return onGround;
}
/**
* Toggle character ducking. When ducked the characters capsule collision
* shape height will be multiplied by duckedFactor to make the capsule
* smaller. When unducking, the character will check with a ray test if it
* can in fact unduck and only do so when its possible. You can check the
* state of the unducking by checking isDucked().
*
* @param enabled
*/
public void setDucked(boolean enabled) {
if (enabled) {
setHeightPercent(duckedFactor);
ducked = true;
wantToUnDuck = false;
} else {
if (checkCanUnDuck()) {
setHeightPercent(1);
ducked = false;
} else {
wantToUnDuck = true;
}
}
}
/**
* Check if the character is ducking, either due to user input or due to
* unducking being impossible at the moment (obstacle above).
*
* @return
*/
public boolean isDucked() {
return ducked;
}
/**
* Sets the height multiplication factor for ducking.
*
* @param factor The factor by which the height should be multiplied when
* ducking
*/
public void setDuckedFactor(float factor) {
duckedFactor = factor;
}
/**
* Gets the height multiplication factor for ducking.
*
* @return
*/
public float getDuckedFactor() {
return duckedFactor;
}
/**
* Sets the walk direction of the character. This parameter is framerate
* independent and the character will move continuously in the direction
* given by the vector with the speed given by the vector length in m/s.
*
* @param vec The movement direction and speed in m/s
*/
public void setWalkDirection(Vector3f vec) {
walkDirection.set(vec);
}
/**
* Gets the current walk direction and speed of the character. The length of
* the vector defines the speed.
*
* @return
*/
public Vector3f getWalkDirection() {
return walkDirection;
}
/**
* Sets the view direction for the character. Note this only defines the
* rotation of the spatial in the local x/z plane of the character.
*
* @param vec
*/
public void setViewDirection(Vector3f vec) {
viewDirection.set(vec);
updateLocalViewDirection();
}
/**
* Gets the current view direction, note this doesn't need to correspond
* with the spatials forward direction.
*
* @return
*/
public Vector3f getViewDirection() {
return viewDirection;
}
/**
* Realign the local forward vector to given direction vector, if null is
* supplied Vector3f.UNIT_Z is used. Input vector has to be perpendicular to
* current gravity vector. This normally only needs to be called when the
* gravity direction changed continuously and the local forward vector is
* off due to drift. E.g. after walking around on a sphere "planet" for a
* while and then going back to a y-up coordinate system the local z-forward
* might not be 100% alinged with Z axis.
*
* @param vec The new forward vector, has to be perpendicular to the current
* gravity vector!
*/
public void resetForward(Vector3f vec) {
if (vec == null) {
vec = Vector3f.UNIT_Z;
}
localForward.set(vec);
updateLocalCoordinateSystem();
}
/**
* Get the current linear velocity along the three axes of the character.
* This is prepresented in world coordinates, parent coordinates when the
* control is set to applyLocalPhysics.
*
* @return The current linear velocity of the character
*/
public Vector3f getVelocity() {
return velocity;
}
/**
* Set the gravity for this character. Note that this also realigns the
* local coordinate system of the character so that continuous changes in
* gravity direction are possible while maintaining a sensible control over
* the character.
*
* @param gravity
*/
public void setGravity(Vector3f gravity) {
rigidBody.setGravity(gravity);
localUp.set(gravity).normalizeLocal().negateLocal();
updateLocalCoordinateSystem();
}
/**
* Get the current gravity of the character.
*
* @return
*/
public Vector3f getGravity() {
return rigidBody.getGravity();
}
/**
* Get the current gravity of the character.
*
* @param store The vector to store the result in
* @return
*/
public Vector3f getGravity(Vector3f store) {
return rigidBody.getGravity(store);
}
/**
* Sets how much the physics forces in the local x/z plane should be
* dampened.
* @param physicsDamping The dampening value, 0 = no dampening, 1 = no external force, default = 0.9
*/
public void setPhysicsDamping(float physicsDamping) {
this.physicsDamping = physicsDamping;
}
/**
* Gets how much the physics forces in the local x/z plane should be
* dampened.
*/
public float getPhysicsDamping() {
return physicsDamping;
}
/**
* This actually sets a new collision shape to the character to change the
* height of the capsule.
*
* @param percent
*/
protected void setHeightPercent(float percent) {
scale.setY(percent);
rigidBody.setCollisionShape(getShape());
}
/**
* This checks if the character is on the ground by doing a ray test.
*/
protected void checkOnGround() {
TempVars vars = TempVars.get();
Vector3f location = vars.vect1;
Vector3f rayVector = vars.vect2;
float height = getFinalHeight();
location.set(localUp).multLocal(height).addLocal(this.location);
rayVector.set(localUp).multLocal(-height - 0.1f).addLocal(location);
List<PhysicsRayTestResult> results = space.rayTest(location, rayVector);
vars.release();
for (PhysicsRayTestResult physicsRayTestResult : results) {
if (!physicsRayTestResult.getCollisionObject().equals(rigidBody)) {
onGround = true;
return;
}
}
onGround = false;
}
/**
* This checks if the character can go from ducked to unducked state by
* doing a ray test.
*/
protected boolean checkCanUnDuck() {
TempVars vars = TempVars.get();
Vector3f location = vars.vect1;
Vector3f rayVector = vars.vect2;
location.set(localUp).multLocal(FastMath.ZERO_TOLERANCE).addLocal(this.location);
rayVector.set(localUp).multLocal(height + FastMath.ZERO_TOLERANCE).addLocal(location);
List<PhysicsRayTestResult> results = space.rayTest(location, rayVector);
vars.release();
for (PhysicsRayTestResult physicsRayTestResult : results) {
if (!physicsRayTestResult.getCollisionObject().equals(rigidBody)) {
return false;
}
}
return true;
}
/**
* Gets a new collision shape based on the current scale parameter. The
* created collisionshape is a capsule collision shape that is attached to a
* compound collision shape with an offset to set the object center at the
* bottom of the capsule.
*
* @return
*/
protected CollisionShape getShape() {
//TODO: cleanup size mess..
CapsuleCollisionShape capsuleCollisionShape = new CapsuleCollisionShape(getFinalRadius(), (getFinalHeight() - (2 * getFinalRadius())));
CompoundCollisionShape compoundCollisionShape = new CompoundCollisionShape();
Vector3f addLocation = new Vector3f(0, (getFinalHeight() / 2.0f), 0);
compoundCollisionShape.addChildShape(capsuleCollisionShape, addLocation);
return compoundCollisionShape;
}
/**
* Gets the scaled height.
*
* @return
*/
protected float getFinalHeight() {
return height * scale.getY();
}
/**
* Gets the scaled radius.
*
* @return
*/
protected float getFinalRadius() {
return radius * scale.getZ();
}
/**
* Updates the local coordinate system from the localForward and localUp
* vectors, adapts localForward, sets localForwardRotation quaternion to
* local z-forward rotation.
*/
protected void updateLocalCoordinateSystem() {
//gravity vector has possibly changed, calculate new world forward (UNIT_Z)
calculateNewForward(localForwardRotation, localForward, localUp);
localLeft.set(localUp).crossLocal(localForward);
rigidBody.setPhysicsRotation(localForwardRotation);
updateLocalViewDirection();
}
/**
* Updates the local x/z-flattened view direction and the corresponding
* rotation quaternion for the spatial.
*/
protected void updateLocalViewDirection() {
//update local rotation quaternion to use for view rotation
localForwardRotation.multLocal(rotatedViewDirection.set(viewDirection));
calculateNewForward(rotation, rotatedViewDirection, localUp);
}
/**
* This method works similar to Camera.lookAt but where lookAt sets the
* priority on the direction, this method sets the priority on the up vector
* so that the result direction vector and rotation is guaranteed to be
* perpendicular to the up vector.
*
* @param rotation The rotation to set the result on or null to create a new
* Quaternion, this will be set to the new "z-forward" rotation if not null
* @param direction The direction to base the new look direction on, will be
* set to the new direction
* @param worldUpVector The up vector to use, the result direction will be
* perpendicular to this
* @return
*/
protected final void calculateNewForward(Quaternion rotation, Vector3f direction, Vector3f worldUpVector) {
if (direction == null) {
return;
}
TempVars vars = TempVars.get();
Vector3f newLeft = vars.vect1;
Vector3f newLeftNegate = vars.vect2;
newLeft.set(worldUpVector).crossLocal(direction).normalizeLocal();
if (newLeft.equals(Vector3f.ZERO)) {
if (direction.x != 0) {
newLeft.set(direction.y, -direction.x, 0f).normalizeLocal();
} else {
newLeft.set(0f, direction.z, -direction.y).normalizeLocal();
}
logger.log(Level.INFO, "Zero left for direction {0}, up {1}", new Object[]{direction, worldUpVector});
}
newLeftNegate.set(newLeft).negateLocal();
direction.set(worldUpVector).crossLocal(newLeftNegate).normalizeLocal();
if (direction.equals(Vector3f.ZERO)) {
direction.set(Vector3f.UNIT_Z);
logger.log(Level.INFO, "Zero left for left {0}, up {1}", new Object[]{newLeft, worldUpVector});
}
if (rotation != null) {
rotation.fromAxes(newLeft, worldUpVector, direction);
}
vars.release();
}
/**
* This is implemented from AbstractPhysicsControl and called when the
* spatial is attached for example.
*
* @param vec
*/
@Override
protected void setPhysicsLocation(Vector3f vec) {
rigidBody.setPhysicsLocation(vec);
location.set(vec);
}
/**
* This is implemented from AbstractPhysicsControl and called when the
* spatial is attached for example. We don't set the actual physics rotation
* but the view rotation here. It might actually be altered by the
* calculateNewForward method.
*
* @param quat
*/
@Override
protected void setPhysicsRotation(Quaternion quat) {
rotation.set(quat);
rotation.multLocal(rotatedViewDirection.set(viewDirection));
updateLocalViewDirection();
}
/**
* This is implemented from AbstractPhysicsControl and called when the
* control is supposed to add all objects to the physics space.
*
* @param space
*/
@Override
protected void addPhysics(PhysicsSpace space) {
space.getGravity(localUp).normalizeLocal().negateLocal();
updateLocalCoordinateSystem();
space.addCollisionObject(rigidBody);
space.addTickListener(this);
}
/**
* This is implemented from AbstractPhysicsControl and called when the
* control is supposed to remove all objects from the physics space.
*
* @param space
*/
@Override
protected void removePhysics(PhysicsSpace space) {
space.removeCollisionObject(rigidBody);
space.removeTickListener(this);
}
@Override
protected void createSpatialData(Spatial spat) {
rigidBody.setUserObject(spatial);
}
@Override
protected void removeSpatialData(Spatial spat) {
rigidBody.setUserObject(null);
}
public Control cloneForSpatial(Spatial spatial) {
BetterCharacterControl control = new BetterCharacterControl(radius, height, mass);
control.setJumpForce(jumpForce);
return control;
}
@Override
public void write(JmeExporter ex) throws IOException {
super.write(ex);
OutputCapsule oc = ex.getCapsule(this);
oc.write(radius, "radius", 1);
oc.write(height, "height", 1);
oc.write(mass, "mass", 1);
oc.write(jumpForce, "jumpForce", new Vector3f(0, mass * 5, 0));
oc.write(physicsDamping, "physicsDamping", 0.9f);
}
@Override
public void read(JmeImporter im) throws IOException {
super.read(im);
InputCapsule in = im.getCapsule(this);
this.radius = in.readFloat("radius", 1);
this.height = in.readFloat("height", 2);
this.mass = in.readFloat("mass", 80);
this.physicsDamping = in.readFloat("physicsDamping", 0.9f);
this.jumpForce.set((Vector3f) in.readSavable("jumpForce", new Vector3f(0, mass * 5, 0)));
rigidBody = new PhysicsRigidBody(getShape(), mass);
jumpForce.set(new Vector3f(0, mass * 5, 0));
rigidBody.setAngularFactor(0);
}
}