Package com.bulletphysics.collision.shapes

Source Code of com.bulletphysics.collision.shapes.CompoundShape

/*
* Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz>
*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2008 Erwin Coumans  http://www.bulletphysics.com/
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
*    claim that you wrote the original software. If you use this software
*    in a product, an acknowledgment in the product documentation would be
*    appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
*    misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

package com.bulletphysics.collision.shapes;

import com.bulletphysics.collision.broadphase.BroadphaseNativeType;
import com.bulletphysics.linearmath.MatrixUtil;
import com.bulletphysics.linearmath.Transform;
import com.bulletphysics.linearmath.VectorUtil;
import com.bulletphysics.util.ObjectArrayList;
import cz.advel.stack.Stack;
import javax.vecmath.Matrix3f;
import javax.vecmath.Vector3f;

// JAVA NOTE: CompoundShape from 2.71

/**
* CompoundShape allows to store multiple other {@link CollisionShape}s. This allows
* for moving concave collision objects. This is more general than the {@link BvhTriangleMeshShape}.
*
* @author jezek2
*/
public class CompoundShape extends CollisionShape {

  private final ObjectArrayList<CompoundShapeChild> children = new ObjectArrayList<CompoundShapeChild>();
  private final Vector3f localAabbMin = new Vector3f(1e30f, 1e30f, 1e30f);
  private final Vector3f localAabbMax = new Vector3f(-1e30f, -1e30f, -1e30f);

  private OptimizedBvh aabbTree = null;

  private float collisionMargin = 0f;
  protected final Vector3f localScaling = new Vector3f(1f, 1f, 1f);

  public void addChildShape(Transform localTransform, CollisionShape shape) {
    //m_childTransforms.push_back(localTransform);
    //m_childShapes.push_back(shape);
    CompoundShapeChild child = new CompoundShapeChild();
    child.transform.set(localTransform);
    child.childShape = shape;
    child.childShapeType = shape.getShapeType();
    child.childMargin = shape.getMargin();

    children.add(child);

    // extend the local aabbMin/aabbMax
    Vector3f _localAabbMin = Stack.alloc(Vector3f.class), _localAabbMax = Stack.alloc(Vector3f.class);
    shape.getAabb(localTransform, _localAabbMin, _localAabbMax);

    // JAVA NOTE: rewritten
//    for (int i=0;i<3;i++)
//    {
//      if (this.localAabbMin[i] > _localAabbMin[i])
//      {
//        this.localAabbMin[i] = _localAabbMin[i];
//      }
//      if (this.localAabbMax[i] < _localAabbMax[i])
//      {
//        this.localAabbMax[i] = _localAabbMax[i];
//      }
//    }
    VectorUtil.setMin(this.localAabbMin, _localAabbMin);
    VectorUtil.setMax(this.localAabbMax, _localAabbMax);
  }

  /**
   * Remove all children shapes that contain the specified shape.
   */
  public void removeChildShape(CollisionShape shape) {
    boolean done_removing;

    // Find the children containing the shape specified, and remove those children.
    do {
      done_removing = true;

      for (int i = 0; i < children.size(); i++) {
        if (children.getQuick(i).childShape == shape) {
          children.removeQuick(i);
          done_removing = false// Do another iteration pass after removing from the vector
          break;
        }
      }
    }
    while (!done_removing);

    recalculateLocalAabb();
  }
 
  public int getNumChildShapes() {
    return children.size();
  }

  public CollisionShape getChildShape(int index) {
    return children.getQuick(index).childShape;
  }

  public Transform getChildTransform(int index, Transform out) {
    out.set(children.getQuick(index).transform);
    return out;
  }

  public ObjectArrayList<CompoundShapeChild> getChildList() {
    return children;
  }

  /**
   * getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version.
   */
  @Override
  public void getAabb(Transform trans, Vector3f aabbMin, Vector3f aabbMax) {
    Vector3f localHalfExtents = Stack.alloc(Vector3f.class);
    localHalfExtents.sub(localAabbMax, localAabbMin);
    localHalfExtents.scale(0.5f);
    localHalfExtents.x += getMargin();
    localHalfExtents.y += getMargin();
    localHalfExtents.z += getMargin();

    Vector3f localCenter = Stack.alloc(Vector3f.class);
    localCenter.add(localAabbMax, localAabbMin);
    localCenter.scale(0.5f);

    Matrix3f abs_b = Stack.alloc(trans.basis);
    MatrixUtil.absolute(abs_b);

    Vector3f center = Stack.alloc(localCenter);
    trans.transform(center);

    Vector3f tmp = Stack.alloc(Vector3f.class);

    Vector3f extent = Stack.alloc(Vector3f.class);
    abs_b.getRow(0, tmp);
    extent.x = tmp.dot(localHalfExtents);
    abs_b.getRow(1, tmp);
    extent.y = tmp.dot(localHalfExtents);
    abs_b.getRow(2, tmp);
    extent.z = tmp.dot(localHalfExtents);

    aabbMin.sub(center, extent);
    aabbMax.add(center, extent);
  }

  /**
   * Re-calculate the local Aabb. Is called at the end of removeChildShapes.
   * Use this yourself if you modify the children or their transforms.
   */
  public void recalculateLocalAabb() {
    // Recalculate the local aabb
    // Brute force, it iterates over all the shapes left.
    localAabbMin.set(1e30f, 1e30f, 1e30f);
    localAabbMax.set(-1e30f, -1e30f, -1e30f);

    Vector3f tmpLocalAabbMin = Stack.alloc(Vector3f.class);
    Vector3f tmpLocalAabbMax = Stack.alloc(Vector3f.class);

    // extend the local aabbMin/aabbMax
    for (int j = 0; j < children.size(); j++) {
      children.getQuick(j).childShape.getAabb(children.getQuick(j).transform, tmpLocalAabbMin, tmpLocalAabbMax);
     
      for (int i = 0; i < 3; i++) {
        if (VectorUtil.getCoord(localAabbMin, i) > VectorUtil.getCoord(tmpLocalAabbMin, i)) {
          VectorUtil.setCoord(localAabbMin, i, VectorUtil.getCoord(tmpLocalAabbMin, i));
        }
        if (VectorUtil.getCoord(localAabbMax, i) < VectorUtil.getCoord(tmpLocalAabbMax, i)) {
          VectorUtil.setCoord(localAabbMax, i, VectorUtil.getCoord(tmpLocalAabbMax, i));
        }
      }
    }
  }
 
  @Override
  public void setLocalScaling(Vector3f scaling) {
    localScaling.set(scaling);
  }

  @Override
  public Vector3f getLocalScaling(Vector3f out) {
    out.set(localScaling);
    return out;
  }

  @Override
  public void calculateLocalInertia(float mass, Vector3f inertia) {
    // approximation: take the inertia from the aabb for now
    Transform ident = Stack.alloc(Transform.class);
    ident.setIdentity();
    Vector3f aabbMin = Stack.alloc(Vector3f.class), aabbMax = Stack.alloc(Vector3f.class);
    getAabb(ident, aabbMin, aabbMax);

    Vector3f halfExtents = Stack.alloc(Vector3f.class);
    halfExtents.sub(aabbMax, aabbMin);
    halfExtents.scale(0.5f);

    float lx = 2f * halfExtents.x;
    float ly = 2f * halfExtents.y;
    float lz = 2f * halfExtents.z;

    inertia.x = (mass / 12f) * (ly * ly + lz * lz);
    inertia.y = (mass / 12f) * (lx * lx + lz * lz);
    inertia.z = (mass / 12f) * (lx * lx + ly * ly);
  }
 
  @Override
  public BroadphaseNativeType getShapeType() {
    return BroadphaseNativeType.COMPOUND_SHAPE_PROXYTYPE;
  }

  @Override
  public void setMargin(float margin) {
    collisionMargin = margin;
  }

  @Override
  public float getMargin() {
    return collisionMargin;
  }

  @Override
  public String getName() {
    return "Compound";
  }

  // this is optional, but should make collision queries faster, by culling non-overlapping nodes
  // void  createAabbTreeFromChildren();
 
  public OptimizedBvh getAabbTree() {
    return aabbTree;
  }

  /**
   * Computes the exact moment of inertia and the transform from the coordinate
   * system defined by the principal axes of the moment of inertia and the center
   * of mass to the current coordinate system. "masses" points to an array
   * of masses of the children. The resulting transform "principal" has to be
   * applied inversely to all children transforms in order for the local coordinate
   * system of the compound shape to be centered at the center of mass and to coincide
   * with the principal axes. This also necessitates a correction of the world transform
   * of the collision object by the principal transform.
   */
  public void calculatePrincipalAxisTransform(float[] masses, Transform principal, Vector3f inertia) {
    int n = children.size();

    float totalMass = 0;
    Vector3f center = Stack.alloc(Vector3f.class);
    center.set(0, 0, 0);
    for (int k = 0; k < n; k++) {
      center.scaleAdd(masses[k], children.getQuick(k).transform.origin, center);
      totalMass += masses[k];
    }
    center.scale(1f / totalMass);
    principal.origin.set(center);

    Matrix3f tensor = Stack.alloc(Matrix3f.class);
    tensor.setZero();

    for (int k = 0; k < n; k++) {
      Vector3f i = Stack.alloc(Vector3f.class);
      children.getQuick(k).childShape.calculateLocalInertia(masses[k], i);

      Transform t = children.getQuick(k).transform;
      Vector3f o = Stack.alloc(Vector3f.class);
      o.sub(t.origin, center);

      // compute inertia tensor in coordinate system of compound shape
      Matrix3f j = Stack.alloc(Matrix3f.class);
      j.transpose(t.basis);

      j.m00 *= i.x;
      j.m01 *= i.x;
      j.m02 *= i.x;
      j.m10 *= i.y;
      j.m11 *= i.y;
      j.m12 *= i.y;
      j.m20 *= i.z;
      j.m21 *= i.z;
      j.m22 *= i.z;

      j.mul(t.basis, j);

      // add inertia tensor
      tensor.add(j);

      // compute inertia tensor of pointmass at o
      float o2 = o.lengthSquared();
      j.setRow(0, o2, 0, 0);
      j.setRow(1, 0, o2, 0);
      j.setRow(2, 0, 0, o2);
      j.m00 += o.x * -o.x;
      j.m01 += o.y * -o.x;
      j.m02 += o.z * -o.x;
      j.m10 += o.x * -o.y;
      j.m11 += o.y * -o.y;
      j.m12 += o.z * -o.y;
      j.m20 += o.x * -o.z;
      j.m21 += o.y * -o.z;
      j.m22 += o.z * -o.z;

      // add inertia tensor of pointmass
      tensor.m00 += masses[k] * j.m00;
      tensor.m01 += masses[k] * j.m01;
      tensor.m02 += masses[k] * j.m02;
      tensor.m10 += masses[k] * j.m10;
      tensor.m11 += masses[k] * j.m11;
      tensor.m12 += masses[k] * j.m12;
      tensor.m20 += masses[k] * j.m20;
      tensor.m21 += masses[k] * j.m21;
      tensor.m22 += masses[k] * j.m22;
    }

    MatrixUtil.diagonalize(tensor, principal.basis, 0.00001f, 20);

    inertia.set(tensor.m00, tensor.m11, tensor.m22);
  }

}
TOP

Related Classes of com.bulletphysics.collision.shapes.CompoundShape

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.