Package prefuse.util

Source Code of prefuse.util.GraphicsLib

package prefuse.util;

import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.Shape;
import java.awt.Stroke;
import java.awt.geom.AffineTransform;
import java.awt.geom.Ellipse2D;
import java.awt.geom.GeneralPath;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RectangularShape;
import java.awt.geom.RoundRectangle2D;

import prefuse.render.AbstractShapeRenderer;
import prefuse.visual.VisualItem;

/**
* Library of useful computer graphics routines such as geometry routines
* for computing the intersection of different shapes and rendering methods
* for computing bounds and performing optimized drawing.
*
* @author <a href="http://jheer.org">jeffrey heer</a>
*/
public class GraphicsLib {

    /** Indicates no intersection between shapes */
    public static final int NO_INTERSECTION = 0;
    /** Indicates intersection between shapes */
    public static final int COINCIDENT      = -1;
    /** Indicates two lines are parallel */
    public static final int PARALLEL        = -2;
   
    /**
     * Compute the intersection of two line segments.
     * @param a the first line segment
     * @param b the second line segment
     * @param intersect a Point in which to store the intersection point
     * @return the intersection code. One of {@link #NO_INTERSECTION},
     * {@link #COINCIDENT}, or {@link #PARALLEL}.
     */
    public static int intersectLineLine(Line2D a, Line2D b, Point2D intersect) {
        double a1x = a.getX1(), a1y = a.getY1();
        double a2x = a.getX2(), a2y = a.getY2();
        double b1x = b.getX1(), b1y = b.getY1();
        double b2x = b.getX2(), b2y = b.getY2();
        return intersectLineLine(a1x,a1y,a2x,a2y,b1x,b1y,b2x,b2y,intersect);
    }
   
    /**
     * Compute the intersection of two line segments.
     * @param a1x the x-coordinate of the first endpoint of the first line
     * @param a1y the y-coordinate of the first endpoint of the first line
     * @param a2x the x-coordinate of the second endpoint of the first line
     * @param a2y the y-coordinate of the second endpoint of the first line
     * @param b1x the x-coordinate of the first endpoint of the second line
     * @param b1y the y-coordinate of the first endpoint of the second line
     * @param b2x the x-coordinate of the second endpoint of the second line
     * @param b2y the y-coordinate of the second endpoint of the second line
     * @param intersect a Point in which to store the intersection point
     * @return the intersection code. One of {@link #NO_INTERSECTION},
     * {@link #COINCIDENT}, or {@link #PARALLEL}.
     */
    public static int intersectLineLine(double a1x, double a1y, double a2x,
        double a2y, double b1x, double b1y, double b2x, double b2y,
        Point2D intersect)
    {
        double ua_t = (b2x-b1x)*(a1y-b1y)-(b2y-b1y)*(a1x-b1x);
        double ub_t = (a2x-a1x)*(a1y-b1y)-(a2y-a1y)*(a1x-b1x);
        double u_b  = (b2y-b1y)*(a2x-a1x)-(b2x-b1x)*(a2y-a1y);

        if ( u_b != 0 ) {
            double ua = ua_t / u_b;
            double ub = ub_t / u_b;

            if ( 0 <= ua && ua <= 1 && 0 <= ub && ub <= 1 ) {
                intersect.setLocation(a1x+ua*(a2x-a1x), a1y+ua*(a2y-a1y));
                return 1;
            } else {
                return NO_INTERSECTION;
            }
        } else {
            return ( ua_t == 0 || ub_t == 0 ? COINCIDENT : PARALLEL );
        }
    }

    /**
     * Compute the intersection of a line and a rectangle.
     * @param a1 the first endpoint of the line
     * @param a2 the second endpoint of the line
     * @param r the rectangle
     * @param pts a length 2 or greater array of points in which to store
     * the results
     * @return the intersection code. One of {@link #NO_INTERSECTION},
     * {@link #COINCIDENT}, or {@link #PARALLEL}.
     */
    public static int intersectLineRectangle(Point2D a1, Point2D a2, Rectangle2D r, Point2D[] pts) {
        double a1x = a1.getX(), a1y = a1.getY();
        double a2x = a2.getX(), a2y = a2.getY();
        double mxx = r.getMaxX(), mxy = r.getMaxY();
        double mnx = r.getMinX(), mny = r.getMinY();
       
        if ( pts[0] == null ) pts[0] = new Point2D.Double();
        if ( pts[1] == null ) pts[1] = new Point2D.Double();
       
        int i = 0;
        if ( intersectLineLine(mnx,mny,mxx,mny,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        if ( intersectLineLine(mxx,mny,mxx,mxy,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        if ( i == 2 ) return i;
        if ( intersectLineLine(mxx,mxy,mnx,mxy,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        if ( i == 2 ) return i;
        if ( intersectLineLine(mnx,mxy,mnx,mny,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        return i;
    }

    /**
     * Compute the intersection of a line and a rectangle.
     * @param l the line
     * @param r the rectangle
     * @param pts a length 2 or greater array of points in which to store
     * the results
     * @return the intersection code. One of {@link #NO_INTERSECTION},
     * {@link #COINCIDENT}, or {@link #PARALLEL}.
     */
    public static int intersectLineRectangle(Line2D l, Rectangle2D r, Point2D[] pts) {
        double a1x = l.getX1(), a1y = l.getY1();
        double a2x = l.getX2(), a2y = l.getY2();
        double mxx = r.getMaxX(), mxy = r.getMaxY();
        double mnx = r.getMinX(), mny = r.getMinY();
       
        if ( pts[0] == null ) pts[0] = new Point2D.Double();
        if ( pts[1] == null ) pts[1] = new Point2D.Double();
       
        int i = 0;
        if ( intersectLineLine(mnx,mny,mxx,mny,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        if ( intersectLineLine(mxx,mny,mxx,mxy,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        if ( i == 2 ) return i;
        if ( intersectLineLine(mxx,mxy,mnx,mxy,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        if ( i == 2 ) return i;
        if ( intersectLineLine(mnx,mxy,mnx,mny,a1x,a1y,a2x,a2y,pts[i]) > 0 ) i++;
        return i;
    }
   
    /**
     * Computes the 2D convex hull of a set of points using Graham's
     * scanning algorithm. The algorithm has been implemented as described
     * in Cormen, Leiserson, and Rivest's Introduction to Algorithms.
     *
     * The running time of this algorithm is O(n log n), where n is
     * the number of input points.
     *
     * @param pts the input points in [x0,y0,x1,y1,...] order
     * @param len the length of the pts array to consider (2 * #points)
     * @return the convex hull of the input points
     */
    public static double[] convexHull(double[] pts, int len) {
        if (len < 6) {
            throw new IllegalArgumentException(
                    "Input must have at least 3 points");
        }
        int plen = len/2-1;
        float[] angles = new float[plen];
        int[] idx    = new int[plen];
        int[] stack  = new int[len/2];
        return convexHull(pts, len, angles, idx, stack);
    }
   
    /**
     * Computes the 2D convex hull of a set of points using Graham's
     * scanning algorithm. The algorithm has been implemented as described
     * in Cormen, Leiserson, and Rivest's Introduction to Algorithms.
     *
     * The running time of this algorithm is O(n log n), where n is
     * the number of input points.
     *
     * @param pts
     * @return the convex hull of the input points
     */
    public static double[] convexHull(double[] pts, int len,
            float[] angles, int[] idx, int[] stack)
    {
        // check arguments
        int plen = len/2 - 1;
        if (len < 6) {
            throw new IllegalArgumentException(
                    "Input must have at least 3 points");
        }
        if (angles.length < plen || idx.length < plen || stack.length < len/2) {
            throw new IllegalArgumentException(
                    "Pre-allocated data structure too small");
        }
       
        int i0 = 0;
        // find the starting ref point: leftmost point with the minimum y coord
        for ( int i=2; i < len; i += 2 ) {
            if ( pts[i+1] < pts[i0+1] ) {
                i0 = i;
            } else if ( pts[i+1] == pts[i0+1] ) {
                i0 = (pts[i] < pts[i0] ? i : i0);
            }
        }
       
        // calculate polar angles from ref point and sort
        for ( int i=0, j=0; i < len; i+=2 ) {
            if ( i == i0 ) continue;
            angles[j] = (float)Math.atan2(pts[i+1]-pts[i0+1], pts[i]-pts[i0]);
            idx[j++= i;
        }
        ArrayLib.sort(angles,idx,plen);
       
        // toss out duplicated angles
        float angle = angles[0];
        int ti = 0, tj = idx[0];
        for ( int i=1; i<plen; i++ ) {
            int j = idx[i];
            if ( angle == angles[i] ) {
                // keep whichever angle corresponds to the most distant
                // point from the reference point
                double x1 = pts[tj]   - pts[i0];
                double y1 = pts[tj+1] - pts[i0+1];
                double x2 = pts[j]    - pts[i0];
                double y2 = pts[j+1- pts[i0+1];
                double d1 = x1*x1 + y1*y1;
                double d2 = x2*x2 + y2*y2;
                if ( d1 >= d2 ) {
                    idx[i] = -1;
                } else {
                    idx[ti] = -1;
                    angle = angles[i];
                    ti = i;
                    tj = j;
                }
            } else {
                angle = angles[i];
                ti = i;
                tj = j;
            }
        }
       
        // initialize our stack
        int sp = 0;
        stack[sp++] = i0;
        int j = 0;
        for ( int k=0; k<2; j++ ) {
            if ( idx[j] != -1 ) {
                stack[sp++] = idx[j];
                k++;
            }
        }
       
        // do graham's scan
        for ( ; j < plen; j++ ) {
            if ( idx[j] == -1 ) continue; // skip tossed out points
            while ( isNonLeft(i0, stack[sp-2], stack[sp-1], idx[j], pts) ) {
                sp--;
            }
            stack[sp++] = idx[j];
        }

        // construct the hull
        double[] hull = new double[2*sp];
        for ( int i=0; i<sp; i++ ) {
            hull[2*i]   = pts[stack[i]];
            hull[2*i+1] = pts[stack[i]+1];
        }
       
        return hull;
    }

    /**
     * Convex hull helper method for detecting a non left turn about 3 points
     */
    private static boolean isNonLeft(int i0, int i1, int i2, int i3, double[] pts) {
        double l1, l2, l4, l5, l6, angle1, angle2, angle;

        l1 = Math.sqrt(Math.pow(pts[i2+1]-pts[i1+1],2) + Math.pow(pts[i2]-pts[i1],2));
        l2 = Math.sqrt(Math.pow(pts[i3+1]-pts[i2+1],2) + Math.pow(pts[i3]-pts[i2],2));
        l4 = Math.sqrt(Math.pow(pts[i3+1]-pts[i0+1],2) + Math.pow(pts[i3]-pts[i0],2));
        l5 = Math.sqrt(Math.pow(pts[i1+1]-pts[i0+1],2) + Math.pow(pts[i1]-pts[i0],2));
        l6 = Math.sqrt(Math.pow(pts[i2+1]-pts[i0+1],2) + Math.pow(pts[i2]-pts[i0],2));

        angle1 = Math.acos( ( (l2*l2)+(l6*l6)-(l4*l4) ) / (2*l2*l6) );
        angle2 = Math.acos( ( (l6*l6)+(l1*l1)-(l5*l5) ) / (2*l6*l1) );

        angle = (Math.PI - angle1) - angle2;

        if (angle <= 0.0) {
            return(true);
        } else {
            return(false);
        }
    }
   
    /**
     * Computes the mean, or centroid, of a set of points
     * @param pts the points array, in x1, y1, x2, y2, ... arrangement.
     * @param len the length of the array to consider
     * @return the centroid as a length-2 float array
     */
    public static float[] centroid(float pts[], int len) {
        float[] c = new float[] {0, 0};
        for ( int i=0; i < len; i+=2 ) {
            c[0] += pts[i];
            c[1] += pts[i+1];
        }
        c[0] /= len/2;
        c[1] /= len/2;
        return c;
    }
   
    /**
     * Expand a polygon by adding the given distance along the line from
     * the centroid of the polyong.
     * @param pts the polygon to expand, a set of points in a float array
     * @param len the length of the range of the array to consider
     * @param amt the amount by which to expand the polygon, each point
     * will be moved this distance along the line from the centroid of the
     * polygon to the given point.
     */
    public static void growPolygon(float pts[], int len, float amt) {
        float[] c = centroid(pts, len);
        for ( int i=0; i < len; i+=2 ) {
            float vx = pts[i]-c[0];
            float vy = pts[i+1]-c[1];
            float norm = (float)Math.sqrt(vx*vx+vy*vy);
            pts[i] += amt*vx/norm;
            pts[i+1] += amt*vy/norm;
        }
    }
   
    /**
     * Compute a cardinal spline, a series of cubic Bezier splines smoothly
     * connecting a set of points. Cardinal splines maintain C(1)
     * continuity, ensuring the connected spline segments form a differentiable
     * curve, ensuring at least a minimum level of smoothness.
     * @param pts the points to interpolate with a cardinal spline
     * @param slack a parameter controlling the "tightness" of the spline to
     * the control points, 0.10 is a typically suitable value
     * @param closed true if the cardinal spline should be closed (i.e. return
     * to the starting point), false for an open curve
     * @return the cardinal spline as a Java2D {@link java.awt.geom.GeneralPath}
     * instance.
     */
    public static GeneralPath cardinalSpline(float pts[], float slack, boolean closed) {
        GeneralPath path = new GeneralPath();
        path.moveTo(pts[0], pts[1]);
        return cardinalSpline(path, pts, slack, closed, 0f, 0f);
    }
   
    /**
     * Compute a cardinal spline, a series of cubic Bezier splines smoothly
     * connecting a set of points. Cardinal splines maintain C(1)
     * continuity, ensuring the connected spline segments form a differentiable
     * curve, ensuring at least a minimum level of smoothness.
     * @param pts the points to interpolate with a cardinal spline
     * @param start the starting index from which to read points
     * @param npoints the number of points to consider
     * @param slack a parameter controlling the "tightness" of the spline to
     * the control points, 0.10 is a typically suitable value
     * @param closed true if the cardinal spline should be closed (i.e. return
     * to the starting point), false for an open curve
     * @return the cardinal spline as a Java2D {@link java.awt.geom.GeneralPath}
     * instance.
     */
    public static GeneralPath cardinalSpline(float pts[], int start, int npoints,
            float slack, boolean closed)
    {
        GeneralPath path = new GeneralPath();
        path.moveTo(pts[start], pts[start+1]);
        return cardinalSpline(path, pts, start, npoints, slack, closed, 0f, 0f);
    }
   
    /**
     * Compute a cardinal spline, a series of cubic Bezier splines smoothly
     * connecting a set of points. Cardinal splines maintain C(1)
     * continuity, ensuring the connected spline segments form a differentiable
     * curve, ensuring at least a minimum level of smoothness.
     * @param p the GeneralPath instance to use to store the result
     * @param pts the points to interpolate with a cardinal spline
     * @param slack a parameter controlling the "tightness" of the spline to
     * the control points, 0.10 is a typically suitable value
     * @param closed true if the cardinal spline should be closed (i.e. return
     * to the starting point), false for an open curve
     * @param tx a value by which to translate the curve along the x-dimension
     * @param ty a value by which to translate the curve along the y-dimension
     * @return the cardinal spline as a Java2D {@link java.awt.geom.GeneralPath}
     * instance.
     */
    public static GeneralPath cardinalSpline(GeneralPath p,
            float pts[], float slack, boolean closed, float tx, float ty)
    {
        int npoints = 0;
        for ( ; npoints<pts.length; ++npoints )
            if ( Float.isNaN(pts[npoints]) ) break;
        return cardinalSpline(p, pts, 0, npoints/2, slack, closed, tx, ty);
    }
   
    /**
     * Compute a cardinal spline, a series of cubic Bezier splines smoothly
     * connecting a set of points. Cardinal splines maintain C(1)
     * continuity, ensuring the connected spline segments form a differentiable
     * curve, ensuring at least a minimum level of smoothness.
     * @param p the GeneralPath instance to use to store the result
     * @param pts the points to interpolate with a cardinal spline
     * @param start the starting index from which to read points
     * @param npoints the number of points to consider
     * @param slack a parameter controlling the "tightness" of the spline to
     * the control points, 0.10 is a typically suitable value
     * @param closed true if the cardinal spline should be closed (i.e. return
     * to the starting point), false for an open curve
     * @param tx a value by which to translate the curve along the x-dimension
     * @param ty a value by which to translate the curve along the y-dimension
     * @return the cardinal spline as a Java2D {@link java.awt.geom.GeneralPath}
     * instance.
     */
    public static GeneralPath cardinalSpline(GeneralPath p,
            float pts[], int start, int npoints,
            float slack, boolean closed, float tx, float ty)
    {
        // compute the size of the path
        int len = 2*npoints;
        int end = start+len;
       
        if ( len < 6 ) {
            throw new IllegalArgumentException(
                    "To create spline requires at least 3 points");
        }
       
        float dx1, dy1, dx2, dy2;
       
        // compute first control point
        if ( closed ) {
            dx2 = pts[start+2]-pts[end-2];
            dy2 = pts[start+3]-pts[end-1];
        } else {
            dx2 = pts[start+4]-pts[start];
            dy2 = pts[start+5]-pts[start+1];
        }
       
        // repeatedly compute next control point and append curve
        int i;
        for ( i=start+2; i<end-2; i+=2 ) {
            dx1 = dx2; dy1 = dy2;
            dx2 = pts[i+2]-pts[i-2];
            dy2 = pts[i+3]-pts[i-1];
            p.curveTo(tx+pts[i-2]+slack*dx1, ty+pts[i-1]+slack*dy1,
                      tx+pts[i-slack*dx2, ty+pts[i+1]-slack*dy2,
                      tx+pts[i],             ty+pts[i+1]);
        }
       
        // compute last control point
        if ( closed ) {
            dx1 = dx2; dy1 = dy2;
            dx2 = pts[start]-pts[i-2];
            dy2 = pts[start+1]-pts[i-1];
            p.curveTo(tx+pts[i-2]+slack*dx1, ty+pts[i-1]+slack*dy1,
                      tx+pts[i-slack*dx2, ty+pts[i+1]-slack*dy2,
                      tx+pts[i],             ty+pts[i+1]);
           
            dx1 = dx2; dy1 = dy2;
            dx2 = pts[start+2]-pts[end-2];
            dy2 = pts[start+3]-pts[end-1];
            p.curveTo(tx+pts[end-2]+slack*dx1, ty+pts[end-1]+slack*dy1,
                      tx+pts[0]    -slack*dx2, ty+pts[1]    -slack*dy2,
                      tx+pts[0],               ty+pts[1]);
            p.closePath();
        } else {
            p.curveTo(tx+pts[i-2]+slack*dx2, ty+pts[i-1]+slack*dy2,
                      tx+pts[i-slack*dx2, ty+pts[i+1]-slack*dy2,
                      tx+pts[i],             ty+pts[i+1]);
        }
        return p;
    }
   
    /**
     * Computes a set of curves using the cardinal spline approach, but
     * using straight lines for completely horizontal or vertical segments.
     * @param p the GeneralPath instance to use to store the result
     * @param pts the points to interpolate with the spline
     * @param epsilon threshold value under which to treat the difference
     * between two values to be zero. Used to determine which segments to
     * treat as lines rather than curves.
     * @param slack a parameter controlling the "tightness" of the spline to
     * the control points, 0.10 is a typically suitable value
     * @param closed true if the spline should be closed (i.e. return
     * to the starting point), false for an open curve
     * @param tx a value by which to translate the curve along the x-dimension
     * @param ty a value by which to translate the curve along the y-dimension
     * @return the stack spline as a Java2D {@link java.awt.geom.GeneralPath}
     * instance.
     */
    public static GeneralPath stackSpline(GeneralPath p, float[] pts,
            float epsilon, float slack, boolean closed, float tx, float ty)
    {
        int npoints = 0;
        for ( ; npoints<pts.length; ++npoints )
            if ( Float.isNaN(pts[npoints]) ) break;
        return stackSpline(p,pts,0,npoints/2,epsilon,slack,closed,tx,ty);
    }
   
    /**
     * Computes a set of curves using the cardinal spline approach, but
     * using straight lines for completely horizontal or vertical segments.
     * @param p the GeneralPath instance to use to store the result
     * @param pts the points to interpolate with the spline
     * @param start the starting index from which to read points
     * @param npoints the number of points to consider
     * @param epsilon threshold value under which to treat the difference
     * between two values to be zero. Used to determine which segments to
     * treat as lines rather than curves.
     * @param slack a parameter controlling the "tightness" of the spline to
     * the control points, 0.10 is a typically suitable value
     * @param closed true if the spline should be closed (i.e. return
     * to the starting point), false for an open curve
     * @param tx a value by which to translate the curve along the x-dimension
     * @param ty a value by which to translate the curve along the y-dimension
     * @return the stack spline as a Java2D {@link java.awt.geom.GeneralPath}
     * instance.
     */
    public static GeneralPath stackSpline(GeneralPath p,
            float pts[], int start, int npoints, float epsilon,
            float slack, boolean closed, float tx, float ty)
    {
        // compute the size of the path
        int len = 2*npoints;
        int end = start+len;
       
        if ( len < 6 ) {
            throw new IllegalArgumentException(
                    "To create spline requires at least 3 points");
        }
       
        float dx1, dy1, dx2, dy2;
        // compute first control point
        if ( closed ) {
            dx2 = pts[start+2]-pts[end-2];
            dy2 = pts[start+3]-pts[end-1];
        } else {
            dx2 = pts[start+4]-pts[start];
            dy2 = pts[start+5]-pts[start+1];
        }
       
        // repeatedly compute next control point and append curve
        int i;
        for ( i=start+2; i<end-2; i+=2 ) {
            dx1 = dx2; dy1 = dy2;
            dx2 = pts[i+2]-pts[i-2];
            dy2 = pts[i+3]-pts[i-1];           
            if ( Math.abs(pts[i-pts[i-2]) < epsilon ||
                 Math.abs(pts[i+1]-pts[i-1]) < epsilon )
            {
                p.lineTo(tx+pts[i], ty+pts[i+1]);
            } else {
                p.curveTo(tx+pts[i-2]+slack*dx1, ty+pts[i-1]+slack*dy1,
                          tx+pts[i-slack*dx2, ty+pts[i+1]-slack*dy2,
                          tx+pts[i],             ty+pts[i+1]);
            }
        }
       
        // compute last control point
        dx1 = dx2; dy1 = dy2;
        dx2 = pts[start]-pts[i-2];
        dy2 = pts[start+1]-pts[i-1];
        if ( Math.abs(pts[i-pts[i-2]) < epsilon ||
             Math.abs(pts[i+1]-pts[i-1]) < epsilon )
        {
             p.lineTo(tx+pts[i], ty+pts[i+1]);
        } else {
            p.curveTo(tx+pts[i-2]+slack*dx1, ty+pts[i-1]+slack*dy1,
                      tx+pts[i-slack*dx2, ty+pts[i+1]-slack*dy2,
                      tx+pts[i],             ty+pts[i+1]);
        }
       
        // close the curve if requested
        if ( closed ) {   
            if ( Math.abs(pts[end-2]-pts[0]) < epsilon ||
                 Math.abs(pts[end-1]-pts[1]) < epsilon )
            {
                p.lineTo(tx+pts[0], ty+pts[1]);
            } else {
                dx1 = dx2; dy1 = dy2;
                dx2 = pts[start+2]-pts[end-2];
                dy2 = pts[start+3]-pts[end-1];
                p.curveTo(tx+pts[end-2]+slack*dx1, ty+pts[end-1]+slack*dy1,
                          tx+pts[0]    -slack*dx2, ty+pts[1]    -slack*dy2,
                          tx+pts[0],               ty+pts[1]);
            }
            p.closePath();
        }
        return p;
    }
   
    /**
     * Expand a rectangle by the given amount.
     * @param r the rectangle to expand
     * @param amount the amount by which to expand the rectangle
     */
    public static void expand(Rectangle2D r, double amount) {
        r.setRect(r.getX()-amount, r.getY()-amount,
                  r.getWidth()+2*amount, r.getHeight()+2*amount);
    }
   
    // ------------------------------------------------------------------------
   
    /**
     * Sets a VisualItem's bounds based on its shape and stroke type. This
     * method is optimized to avoid calling .getBounds2D where it can, thus
     * avoiding object initialization and reducing object churn.
     * @param item the VisualItem whose bounds are to be set
     * @param shape a Shape from which to determine the item bounds
     * @param stroke the stroke type that will be used for drawing the object,
     * and may affect the final bounds. A null value indicates the
     * default (line width = 1) stroke is used.
     */
    public static void setBounds(VisualItem item,
                                 Shape shape, BasicStroke stroke)
    {
        double x, y, w, h, lw, lw2;
       
        if ( shape instanceof RectangularShape ) {
            // this covers rectangle, rounded rectangle, ellipse, and arcs
            RectangularShape r = (RectangularShape)shape;
            x = r.getX();
            y = r.getY();
            w = r.getWidth();
            h = r.getHeight();
        } else if ( shape instanceof Line2D ) {
            // this covers straight lines
            Line2D l = (Line2D)shape;
            x = l.getX1();
            y = l.getY1();
            w = l.getX2();
            h = l.getY2();
            if ( w < x ) {
                lw = x;
                x = w;
                w = lw-x;
            } else {
                w = w-x;
            }
            if ( h < y ) {
                lw = y;
                y = h;
                h = lw-y;
            } else {
                h = h-y;
            }
        } else {
            // this covers any other arbitrary shapes, but
            // takes a small object allocation / garbage collection hit
            Rectangle2D r = shape.getBounds2D();
            x = r.getX();
            y = r.getY();
            w = r.getWidth();
            h = r.getHeight();
        }
       
        // adjust boundary for stoke length as necessary
        if ( stroke != null && (lw=stroke.getLineWidth()) > 1 ) {
            lw2 = lw/2.0;
            x -= lw2; y -= lw2; w += lw; h += lw;
        }
        item.setBounds(x, y, w, h);
    }
   
    /**
     * Render a shape associated with a VisualItem into a graphics context. This
     * method uses the {@link java.awt.Graphics} interface methods when it can,
     * as opposed to the {@link java.awt.Graphics2D} methods such as
     * {@link java.awt.Graphics2D#draw(java.awt.Shape)} and
     * {@link java.awt.Graphics2D#fill(java.awt.Shape)}, resulting in a
     * significant performance increase on the Windows platform, particularly
     * for rectangle and line drawing calls.
     * @param g the graphics context to render to
     * @param item the item being represented by the shape, this instance is
     * used to get the correct color values for the drawing
     * @param shape the shape to render
     * @param stroke the stroke type to use for drawing the object.
     * @param type the rendering type indicating if the shape should be drawn,
     * filled, or both. One of
     * {@link prefuse.render.AbstractShapeRenderer#RENDER_TYPE_DRAW},
     * {@link prefuse.render.AbstractShapeRenderer#RENDER_TYPE_FILL},
     * {@link prefuse.render.AbstractShapeRenderer#RENDER_TYPE_DRAW_AND_FILL}, or
     * {@link prefuse.render.AbstractShapeRenderer#RENDER_TYPE_NONE}.
     */
    public static void paint(Graphics2D g, VisualItem item,
                             Shape shape, BasicStroke stroke, int type)
    {
        // if render type is NONE, then there is nothing to do
        if ( type == AbstractShapeRenderer.RENDER_TYPE_NONE )
            return;
       
        // set up colors
        Color strokeColor = ColorLib.getColor(item.getStrokeColor());
        Color fillColor = ColorLib.getColor(item.getFillColor());
        boolean sdraw = (type == AbstractShapeRenderer.RENDER_TYPE_DRAW ||
                         type == AbstractShapeRenderer.RENDER_TYPE_DRAW_AND_FILL) &&
                        strokeColor.getAlpha() != 0;
        boolean fdraw = (type == AbstractShapeRenderer.RENDER_TYPE_FILL ||
                         type == AbstractShapeRenderer.RENDER_TYPE_DRAW_AND_FILL) &&
                        fillColor.getAlpha() != 0;
        if ( !(sdraw || fdraw) ) return;
       
        Stroke origStroke = null;
        if ( sdraw ) {
            origStroke = g.getStroke();
            g.setStroke(stroke);
        }
       
        int x, y, w, h, aw, ah;
        double xx, yy, ww, hh;

        // see if an optimized (non-shape) rendering call is available for us
        // these can speed things up significantly on the windows JRE
        // it is stupid we have to do this, but we do what we must
        // if we are zoomed in, we have no choice but to use
        // full precision rendering methods.
        AffineTransform at = g.getTransform();
        double scale = Math.max(at.getScaleX(), at.getScaleY());
        if ( scale > 1.5 ) {
            if (fdraw) { g.setPaint(fillColor);   g.fill(shape); }
            if (sdraw) { g.setPaint(strokeColor); g.draw(shape); }
        }
        else if ( shape instanceof RectangularShape )
        {
            RectangularShape r = (RectangularShape)shape;
            xx = r.getX(); ww = r.getWidth();
            yy = r.getY(); hh = r.getHeight();
           
            x = (int)xx;
            y = (int)yy;
            w = (int)(ww+xx-x);
            h = (int)(hh+yy-y);
           
            if ( shape instanceof Rectangle2D ) {
                if (fdraw) {
                    g.setPaint(fillColor);
                    g.fillRect(x, y, w, h);
                }
                if (sdraw) {
                    g.setPaint(strokeColor);
                    g.drawRect(x, y, w, h);
                }
            } else if ( shape instanceof RoundRectangle2D ) {
                RoundRectangle2D rr = (RoundRectangle2D)shape;
                aw = (int)rr.getArcWidth();
                ah = (int)rr.getArcHeight();
                if (fdraw) {
                    g.setPaint(fillColor);
                    g.fillRoundRect(x, y, w, h, aw, ah);
                }
                if (sdraw) {
                    g.setPaint(strokeColor);
                    g.drawRoundRect(x, y, w, h, aw, ah);
                }
            } else if ( shape instanceof Ellipse2D ) {
                if (fdraw) {
                    g.setPaint(fillColor);
                    g.fillOval(x, y, w, h);
                }
                if (sdraw) {
                    g.setPaint(strokeColor);
                    g.drawOval(x, y, w, h);
                }
            } else {
                if (fdraw) { g.setPaint(fillColor);   g.fill(shape); }
                if (sdraw) { g.setPaint(strokeColor); g.draw(shape); }
            }
        } else if ( shape instanceof Line2D ) {
            if (sdraw) {
                Line2D l = (Line2D)shape;
                x = (int)(l.getX1()+0.5);
                y = (int)(l.getY1()+0.5);
                w = (int)(l.getX2()+0.5);
                h = (int)(l.getY2()+0.5);
                g.setPaint(strokeColor);
                g.drawLine(x, y, w, h);
            }
        } else {
            if (fdraw) { g.setPaint(fillColor);   g.fill(shape); }
            if (sdraw) { g.setPaint(strokeColor); g.draw(shape); }
        }
        if ( sdraw ) {
            g.setStroke(origStroke);
        }
    }
   
} // end of class GraphicsLib
TOP

Related Classes of prefuse.util.GraphicsLib

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.