Package mia.recommender.ch02

Source Code of mia.recommender.ch02.UserBaseRecommender

package mia.recommender.ch02;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.*;
import org.apache.mahout.cf.taste.impl.eval.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import java.io.*;
import java.util.*;
import org.apache.mahout.common.RandomUtils;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;


/**
  * <p>
  *  This code implements a boolean collaborative filtering algorithm.
  * </p>
*/

class UserBaseRecommender {

  private UserBaseRecommender() {}

  public static final int NUM_OF_RECOMMENDATIONS_RETURNED = 10;
    public static boolean USE_LOG_LIKELIHOOD = true;
    public static boolean WRITE_TO_FILE = false;
    public static boolean KILL_EARLY = false;


  public static void main(String[] args) throws Exception
  {
   
    BufferedWriter out = new BufferedWriter(new FileWriter("recommendations.txt"));
 
    String INPUT_FILE = "ua.base.boolean-large.csv";
    if( args.length > 0){
      INPUT_FILE = args[0];
    }
 
    UserSimilarity similarity;
    DataModel model = new FileDataModel(new File(INPUT_FILE));
   
   
    if( USE_LOG_LIKELIHOOD ){
      similarity =  new LogLikelihoodSimilarity(model);
    }
    else {
      similarity =  new TanimotoCoefficientSimilarity(model);
    }
    UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
    UserBasedRecommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
   
    int counter = 0;
    LongPrimitiveIterator users = model.getUserIDs();
    while (users.hasNext()) {
      long userID = users.nextLong();
      List<RecommendedItem> recommendations = recommender.recommend(userID, NUM_OF_RECOMMENDATIONS_RETURNED);
      for (RecommendedItem recommendation : recommendations) {
       
        if( WRITE_TO_FILE ){
          out.write(String.format("%d,%d,%2.2f\n", userID, recommendation.getItemID(), recommendation.getValue()));
        }
        else {
          System.out.format("%d,%d,%2.2f\n", userID, recommendation.getItemID(), recommendation.getValue() );
        }
       
        if (counter == 100 && KILL_EARLY){
          out.close();
          System.exit(0);
        }
        counter++;
      }   
    }
   
    out.close();
  }
}
TOP

Related Classes of mia.recommender.ch02.UserBaseRecommender

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.