Package org.encog.util.benchmark

Source Code of org.encog.util.benchmark.Evaluate

/*
* Encog(tm) Core v3.3 - Java Version
* http://www.heatonresearch.com/encog/
* https://github.com/encog/encog-java-core
* Copyright 2008-2014 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*  
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.util.benchmark;

import org.encog.ml.data.MLDataSet;
import org.encog.ml.train.MLTrain;
import org.encog.neural.networks.BasicNetwork;
import org.encog.neural.networks.training.propagation.resilient.ResilientPropagation;
import org.encog.util.simple.EncogUtility;

/**
* Used to evaluate the training time for a network.
*
* @author jheaton
*
*/
public final class Evaluate {

  /**
   * Mili-seconds in a second.
   */
  public static final int MILIS = 1000;

 
  public static int evaluateTrain(int input, int hidden1, int hidden2,
      int output) {
    final BasicNetwork network = EncogUtility.simpleFeedForward(input,
        hidden1, hidden2, output, true);
    final MLDataSet training = RandomTrainingFactory.generate(1000,
        10000, input, output, -1, 1);
 
   
    return evaluateTrain(network, training);
  }

  /**
   * Evaluate how long it takes to calculate the error for the network. This
   * causes each of the training pairs to be run through the network. The
   * network is evaluated 10 times and the lowest time is reported.
   *
   * @param network
   *            The network to evaluate with.
   * @param training
   *            The training data to use.
   * @return The lowest number of seconds that each of the ten attempts took.
   */
  public static int evaluateTrain(
      final BasicNetwork network, final MLDataSet training) {
    // train the neural network
    MLTrain train;
   
    train = new ResilientPropagation(network, training);

    final long start = System.currentTimeMillis();
    final long stop = start + (10 * MILIS);

    int iterations = 0;
    while (System.currentTimeMillis() < stop) {
      iterations++;
      train.iteration();
    }

    return iterations;
  }

}
TOP

Related Classes of org.encog.util.benchmark.Evaluate

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.