Package org.encog.neural.som

Source Code of org.encog.neural.som.SOM

/*
* Encog(tm) Core v3.3 - Java Version
* http://www.heatonresearch.com/encog/
* https://github.com/encog/encog-java-core
* Copyright 2008-2014 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*  
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.neural.som;

import org.encog.mathutil.matrices.Matrix;
import org.encog.ml.BasicML;
import org.encog.ml.MLClassification;
import org.encog.ml.MLError;
import org.encog.ml.MLResettable;
import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.neural.NeuralNetworkError;
import org.encog.neural.som.training.basic.BestMatchingUnit;
import org.encog.util.EngineArray;

/**
* A self organizing map neural network.
*
*/
public class SOM extends BasicML implements MLClassification, MLResettable,
    MLError {

  /**
   * Serial id.
   */
  private static final long serialVersionUID = 1L;

  /**
   * Do not allow patterns to go below this very small number.
   */
  public static final double VERYSMALL = 1.E-30;

  /**
   * The weights of the output neurons base on the input from the input
   * neurons.
   */
  private Matrix weights;

  /**
   * Default constructor.
   */
  public SOM() {

  }

  /**
   * The constructor.
   *
   * @param inputCount
   *            Number of input neurons
   * @param outputCount
   *            Number of output neurons
   */
  public SOM(final int inputCount, final int outputCount) {
    this.weights = new Matrix(outputCount, inputCount);
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public double calculateError(final MLDataSet data) {

    final BestMatchingUnit bmu = new BestMatchingUnit(this);

    bmu.reset();

    // Determine the BMU for each training element.
    for (final MLDataPair pair : data) {
      final MLData input = pair.getInput();
      bmu.calculateBMU(input);
    }

    // update the error
    return bmu.getWorstDistance() / 100.0;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int classify(final MLData input) {
    if (input.size() > getInputCount()) {
      throw new NeuralNetworkError(
          "Can't classify SOM with input size of " + getInputCount()
              + " with input data of count " + input.size());
    }

    double[][] m = this.weights.getData();
    double[] inputData = input.getData();
    double minDist = Double.POSITIVE_INFINITY;
    int result = -1;

    for (int i = 0; i < getOutputCount(); i++) {
      double dist = EngineArray.euclideanDistance(inputData, m[i]);
      if (dist < minDist) {
        minDist = dist;
        result = i;
      }
    }

    return result;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int getInputCount() {
    return this.weights.getCols();
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int getOutputCount() {
    return this.weights.getRows();
  }

  /**
   * @return the weights
   */
  public Matrix getWeights() {
    return this.weights;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public void reset() {
    this.weights.randomize(-1, 1);

  }

  /**
   * {@inheritDoc}
   */
  @Override
  public void reset(final int seed) {
    reset();
  }

  /**
   * @param weights
   *            the weights to set
   */
  public void setWeights(final Matrix weights) {
    this.weights = weights;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public void updateProperties() {
    // unneeded
  }

  /**
   * An alias for the classify method, kept for compatibility
   * with earlier versions of Encog.
   *
   * @param input
   *            The input pattern.
   * @return The winning neuron.
   */
  public int winner(final MLData input) {
    return classify(input);
  }

}
TOP

Related Classes of org.encog.neural.som.SOM

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.