Package org.encog.neural.pnn

Source Code of org.encog.neural.pnn.PersistBasicPNN

/*
* Encog(tm) Core v3.3 - Java Version
* http://www.heatonresearch.com/encog/
* https://github.com/encog/encog-java-core
* Copyright 2008-2014 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*  
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.neural.pnn;

import java.io.InputStream;
import java.io.OutputStream;
import java.util.List;
import java.util.Map;

import org.encog.ml.data.MLData;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.basic.BasicMLData;
import org.encog.ml.data.basic.BasicMLDataPair;
import org.encog.ml.data.basic.BasicMLDataSet;
import org.encog.persist.EncogFileSection;
import org.encog.persist.EncogPersistor;
import org.encog.persist.EncogReadHelper;
import org.encog.persist.EncogWriteHelper;
import org.encog.persist.PersistConst;
import org.encog.util.EngineArray;
import org.encog.util.csv.CSVFormat;

/**
* Persist a PNN.
*/
public class PersistBasicPNN implements EncogPersistor {

  /**
   * The output mode property.
   */
  public static final String PROPERTY_outputMode = "outputMode";

  /**
   * Convert a kernel type to a string.
   * @param k The kernel type.
   * @return The string.
   */
  public static String kernelToString(final PNNKernelType k) {
    switch (k) {
    case Gaussian:
      return "gaussian";
    case Reciprocal:
      return "reciprocal";
    default:
      return null;
    }
  }

  /**
   * Convert output mode to string.
   * @param mode The output mode.
   * @return The string.
   */
  public static String outputModeToString(final PNNOutputMode mode) {
    switch (mode) {
    case Regression:
      return "regression";
    case Unsupervised:
      return "unsupervised";
    case Classification:
      return "classification";
    default:
      return null;
    }
  }

  /**
   * Convert a string to a PNN kernel.
   * @param k The string.
   * @return The kernel.
   */
  public static PNNKernelType stringToKernel(final String k) {
    if (k.equalsIgnoreCase("gaussian")) {
      return PNNKernelType.Gaussian;
    } else if (k.equalsIgnoreCase("reciprocal")) {
      return PNNKernelType.Reciprocal;
    } else {
      return null;
    }
  }

  /**
   * Convert a string to a PNN output mode.
   * @param mode The string.
   * @return The output ndoe.
   */
  public static PNNOutputMode stringToOutputMode(final String mode) {
    if (mode.equalsIgnoreCase("regression")) {
      return PNNOutputMode.Regression;
    } else if (mode.equalsIgnoreCase("unsupervised")) {
      return PNNOutputMode.Unsupervised;
    } else if (mode.equalsIgnoreCase("classification")) {
      return PNNOutputMode.Classification;
    } else {
      return null;
    }
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public int getFileVersion() {
    return 1;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public String getPersistClassString() {
    return "BasicPNN";
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public Object read(final InputStream is) {

    final EncogReadHelper in = new EncogReadHelper(is);
    EncogFileSection section;
    final BasicMLDataSet samples = new BasicMLDataSet();
    Map<String, String> networkParams = null;
    PNNKernelType kernel = null;
    PNNOutputMode outmodel = null;
    int inputCount = 0;
    int outputCount = 0;
    double error = 0;
    double[] sigma = null;

    while ((section = in.readNextSection()) != null) {
      if (section.getSectionName().equals("PNN")
          && section.getSubSectionName().equals("PARAMS")) {
        networkParams = section.parseParams();
      }
      if (section.getSectionName().equals("PNN")
          && section.getSubSectionName().equals("NETWORK")) {
        final Map<String, String> params = section.parseParams();
        inputCount = EncogFileSection.parseInt(params,
            PersistConst.INPUT_COUNT);
        outputCount = EncogFileSection.parseInt(params,
            PersistConst.OUTPUT_COUNT);
        kernel = PersistBasicPNN.stringToKernel(params
            .get(PersistConst.KERNEL));
        outmodel = PersistBasicPNN.stringToOutputMode(params
            .get(PersistBasicPNN.PROPERTY_outputMode));
        error = EncogFileSection
            .parseDouble(params, PersistConst.ERROR);
        sigma = section.parseDoubleArray(params,
            PersistConst.SIGMA);
      }
      if (section.getSectionName().equals("PNN")
          && section.getSubSectionName().equals("SAMPLES")) {
        for (final String line : section.getLines()) {
          final List<String> cols = EncogFileSection
              .splitColumns(line);
          int index = 0;
          final MLData inputData = new BasicMLData(inputCount);
          for (int i = 0; i < inputCount; i++) {
            inputData.setData(i,
                CSVFormat.EG_FORMAT.parse(cols.get(index++)));
          }
          final MLData idealData = new BasicMLData(outputCount);
          idealData.setData(0,CSVFormat.EG_FORMAT.parse(cols.get(index++)));
          final MLDataPair pair = new BasicMLDataPair(inputData,idealData);
          samples.add(pair);
        }
      }
    }

    final BasicPNN result = new BasicPNN(kernel, outmodel, inputCount,
        outputCount);
    if (networkParams != null) {
      result.getProperties().putAll(networkParams);
    }
    result.setSamples(samples);
    result.setError(error);
    if (sigma != null) {
      EngineArray.arrayCopy(sigma, result.getSigma());
    }

    return result;
  }

  /**
   * {@inheritDoc}
   */
  @Override
  public void save(final OutputStream os, final Object obj) {
    final EncogWriteHelper out = new EncogWriteHelper(os);
    final BasicPNN pnn = (BasicPNN) obj;
    out.addSection("PNN");
    out.addSubSection("PARAMS");
    out.addProperties(pnn.getProperties());
    out.addSubSection("NETWORK");

    out.writeProperty(PersistConst.ERROR, pnn.getError());
    out.writeProperty(PersistConst.INPUT_COUNT, pnn.getInputCount());
    out.writeProperty(PersistConst.KERNEL,
        PersistBasicPNN.kernelToString(pnn.getKernel()));
    out.writeProperty(PersistConst.OUTPUT_COUNT, pnn.getOutputCount());
    out.writeProperty(PersistBasicPNN.PROPERTY_outputMode,
        PersistBasicPNN.outputModeToString(pnn.getOutputMode()));
    out.writeProperty(PersistConst.SIGMA, pnn.getSigma());

    out.addSubSection("SAMPLES");
   
    if (pnn.getSamples() != null) {
      for (final MLDataPair pair : pnn.getSamples()) {
        for (int i = 0; i < pair.getInput().size(); i++) {
          out.addColumn(pair.getInput().getData(i));
        }
        for (int i = 0; i < pair.getIdeal().size(); i++) {
          out.addColumn(pair.getIdeal().getData(i));
        }
        out.writeLine();
      }
    }

    out.flush();
  }
}
TOP

Related Classes of org.encog.neural.pnn.PersistBasicPNN

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.