Package org.encog.neural.pattern

Source Code of org.encog.neural.pattern.HopfieldPattern

/*
* Encog(tm) Core v3.3 - Java Version
* http://www.heatonresearch.com/encog/
* https://github.com/encog/encog-java-core
* Copyright 2008-2014 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*  
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.neural.pattern;

import org.encog.engine.network.activation.ActivationFunction;
import org.encog.ml.MLMethod;
import org.encog.neural.thermal.HopfieldNetwork;

/**
* Create a Hopfield pattern. A Hopfield neural network has a single layer that
* functions both as the input and output layers. There are no hidden layers.
* Hopfield networks are used for basic pattern recognition. When a Hopfield
* network recognizes a pattern, it "echos" that pattern on the output.
*
* @author jheaton
*
*/
public class HopfieldPattern implements NeuralNetworkPattern {

  /**
   * How many neurons in the Hopfield network. Default to -1, which is
   * invalid. Therefore this value must be set.
   */
  private int neuronCount = -1;

  /**
   * Add a hidden layer. This will throw an error, because the Hopfield neural
   * network has no hidden layers.
   *
   * @param count
   *            The number of neurons.
   */
  public void addHiddenLayer(final int count) {
    throw new PatternError("A Hopfield network has no hidden layers.");
  }

  /**
   * Nothing to clear.
   */
  public void clear() {
  }

  /**
   * Generate the Hopfield neural network.
   *
   * @return The generated network.
   */
  public MLMethod generate() {
    HopfieldNetwork logic = new HopfieldNetwork(this.neuronCount);
    return logic;
  }

  /**
   * Set the activation function to use. This function will throw an error,
   * because the Hopfield network must use the BiPolar activation function.
   *
   * @param activation
   *            The activation function to use.
   */
  public void setActivationFunction(final ActivationFunction activation) {
    throw new PatternError( "A Hopfield network will use the BiPolar activation "
        + "function, no activation function needs to be specified.");

  }

  /**
   * Set the number of input neurons, this must match the output neurons.
   *
   * @param count
   *            The number of neurons.
   */
  public void setInputNeurons(final int count) {
    this.neuronCount = count;

  }

  /**
   * Set the number of output neurons, should not be used with a hopfield
   * neural network, because the number of input neurons defines the number of
   * output neurons.
   *
   * @param count
   *            The number of neurons.
   */
  public void setOutputNeurons(final int count) {
    throw new PatternError( "A Hopfield network has a single layer, so no need "
        + "to specify the output count.");

  }

}
TOP

Related Classes of org.encog.neural.pattern.HopfieldPattern

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.