/*
* Encog(tm) Core v3.3 - Java Version
* http://www.heatonresearch.com/encog/
* https://github.com/encog/encog-java-core
* Copyright 2008-2014 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.ensemble.stacking;
import java.util.ArrayList;
import org.encog.ensemble.Ensemble;
import org.encog.ensemble.EnsembleAggregator;
import org.encog.ensemble.EnsembleML;
import org.encog.ensemble.EnsembleMLMethodFactory;
import org.encog.ensemble.EnsembleTrainFactory;
import org.encog.ensemble.EnsembleTypes;
import org.encog.ensemble.EnsembleTypes.ProblemType;
import org.encog.ensemble.data.factories.WrappingNonResamplingDataSetFactory;
public class Stacking extends Ensemble {
private int splits;
public Stacking(int splits, int dataSetSize, EnsembleMLMethodFactory mlFactory, EnsembleTrainFactory trainFactory, EnsembleAggregator aggregator)
{
int dataSplits = aggregator.needsTraining() ? splits + 1 : splits;
this.dataSetFactory = new WrappingNonResamplingDataSetFactory(dataSplits);
this.splits = splits;
this.mlFactory = mlFactory;
this.trainFactory = trainFactory;
this.members = new ArrayList<EnsembleML>();
this.aggregator = aggregator;
initMembers();
}
@Override
public void initMembers()
{
this.initMembersBySplits(this.splits);
}
@Override
public ProblemType getProblemType() {
return EnsembleTypes.ProblemType.CLASSIFICATION;
}
@Override
public EnsembleML getMember(int memberNumber) {
return members.get(memberNumber);
}
public void trainStep() {
for (EnsembleML current : members)
{
current.trainStep();
}
}
}