Package org.encog.ensemble.adaboost

Source Code of org.encog.ensemble.adaboost.AdaBoost

/*
* Encog(tm) Core v3.3 - Java Version
* http://www.heatonresearch.com/encog/
* https://github.com/encog/encog-java-core
* Copyright 2008-2014 Heaton Research, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*  
* For more information on Heaton Research copyrights, licenses
* and trademarks visit:
* http://www.heatonresearch.com/copyright
*/
package org.encog.ensemble.adaboost;

import java.util.ArrayList;

import org.encog.ensemble.Ensemble;
import org.encog.ensemble.EnsembleAggregator;
import org.encog.ensemble.EnsembleML;
import org.encog.ensemble.EnsembleMLMethodFactory;
import org.encog.ensemble.EnsembleTrainFactory;
import org.encog.ensemble.EnsembleTypes;
import org.encog.ensemble.EnsembleTypes.ProblemType;
import org.encog.ensemble.GenericEnsembleML;
import org.encog.ensemble.data.EnsembleDataSet;
import org.encog.ensemble.data.factories.ResamplingDataSetFactory;
import org.encog.mathutil.VectorAlgebra;
import org.encog.ml.data.MLDataPair;
import org.encog.ml.data.MLDataSet;
import org.encog.ml.train.MLTrain;

public class AdaBoost extends Ensemble {

  private int T;
  private VectorAlgebra va;
  private ArrayList<Double> weights;

  public AdaBoost(int iterationsT, int dataSetSize, EnsembleMLMethodFactory mlFactory, EnsembleTrainFactory trainFactory, EnsembleAggregator aggregator) {
    this.dataSetFactory = new ResamplingDataSetFactory(dataSetSize);
    this.T = iterationsT;
    this.mlFactory = mlFactory;
    this.va = new VectorAlgebra();
    this.weights = new ArrayList<Double>();
    this.members = new ArrayList<EnsembleML>();
    this.trainFactory = trainFactory;
    this.aggregator = aggregator;
  }

  @Override
  public void train(double targetAccuracy, double selectionError, EnsembleDataSet testset, boolean verbose) {
    ArrayList<Double> D = new ArrayList<Double>();
    int dss = dataSetFactory.getInputData().size();
    for (int k = 0; k < dss; k++)
      D.add(1.0 / (float) dss);
    for (int i = 0; i < T; i++) {
      dataSetFactory.setSignificance(D);
      MLDataSet thisSet = dataSetFactory.getNewDataSet();
      GenericEnsembleML newML = new GenericEnsembleML(mlFactory.createML(dataSetFactory.getInputData().getInputSize(), dataSetFactory.getInputData().getIdealSize()),mlFactory.getLabel());
      do {
        mlFactory.reInit(newML.getMl());
        MLTrain train = trainFactory.getTraining(newML.getMl(), thisSet);
        newML.setTraining(train);
        newML.train(targetAccuracy,verbose);
      } while (newML.getError(testset) > selectionError);
      double newWeight = getWeightedError(newML,thisSet);
      members.add(newML);
      weights.add(newWeight);
      D = updateD(newML,thisSet,D);
    }
  }

  private double epsilon(GenericEnsembleML ml, MLDataSet dataSet) {
    int bad = 0;
    for (MLDataPair data: dataSet) {
      if (ml.classify(data.getInput()) != ml.winner(data.getIdeal()))
        bad++;
    }
    return (float) bad / (float) dataSet.size();
  }

  private ArrayList<Double> updateD(GenericEnsembleML ml, MLDataSet dataSet, ArrayList<Double> D_t) {
    ArrayList<Double> D_tplus1 = new ArrayList<Double>();
    double epsilon = epsilon(ml, dataSet);
    double alpha_t = Math.log(1 - epsilon / epsilon);
    for (int i = 0; i < dataSet.size(); i++) {
      double D_tplus1_i = D_t.get(i) * Math.exp(-alpha_t * va.dotProduct(dataSet.get(i).getIdeal().getData(), ml.compute(dataSet.get(i).getInput()).getData()));
      D_tplus1.add(D_tplus1_i);
    }
    return D_tplus1;
  }

  @Override
  public void initMembers() {
    //This cannot do anything, as member generation is strictly linked to training!
  }

  private double getWeightedError(GenericEnsembleML newML, MLDataSet dataSet) {
    double sum = 0;
    for (int i = 0; i < dataSet.size(); i++) {
      MLDataPair currentData = dataSet.get(i);
      if (newML.classify(currentData.getInput()) != newML.winner(currentData.getIdeal()))
        sum += currentData.getSignificance();
    }
    return sum;
  }

  @Override
  public void addMember(EnsembleML newMember) throws NotPossibleInThisMethod {
    throw new NotPossibleInThisMethod();
  }

  @Override
  public ProblemType getProblemType() {
    return EnsembleTypes.ProblemType.CLASSIFICATION;
  }

}
TOP

Related Classes of org.encog.ensemble.adaboost.AdaBoost

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.