Package opennlp.uima.tokenize

Source Code of opennlp.uima.tokenize.TokenizerTrainer

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package opennlp.uima.tokenize;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Writer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

import opennlp.tools.ml.maxent.GIS;
import opennlp.tools.tokenize.TokenSample;
import opennlp.tools.tokenize.TokenSampleStream;
import opennlp.tools.tokenize.TokenizerME;
import opennlp.tools.tokenize.TokenizerModel;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.ObjectStreamUtils;
import opennlp.tools.util.PlainTextByLineStream;
import opennlp.tools.util.Span;
import opennlp.uima.util.CasConsumerUtil;
import opennlp.uima.util.ContainingConstraint;
import opennlp.uima.util.OpennlpUtil;
import opennlp.uima.util.SampleTraceStream;
import opennlp.uima.util.UimaUtil;

import org.apache.uima.UimaContext;
import org.apache.uima.cas.CAS;
import org.apache.uima.cas.FSIndex;
import org.apache.uima.cas.Type;
import org.apache.uima.cas.TypeSystem;
import org.apache.uima.cas.text.AnnotationFS;
import org.apache.uima.collection.CasConsumer_ImplBase;
import org.apache.uima.resource.ResourceInitializationException;
import org.apache.uima.resource.ResourceProcessException;
import org.apache.uima.util.Level;
import org.apache.uima.util.Logger;
import org.apache.uima.util.ProcessTrace;

/**
* OpenNLP Tokenizer trainer.
* <p>
* Mandatory parameters
* <table border=1>
*   <caption></caption>
*   <tr><th>Type</th> <th>Name</th> <th>Description</th></tr>
*   <tr><td>String</td> <td>opennlp.uima.ModelName</td> <td>The name of the model file</td></tr>
*   <tr><td>String</td> <td>opennlp.uima.SentenceType</td> <td>The full name of the sentence type</td></tr>
*   <tr><td>String</td> <td>opennlp.uima.TokenType</td> <td>The full name of the token type</td></tr>
* </table>
* <p>
* Optional parameters
* <table border=1>
*   <caption></caption>
*   <tr><th>Type</th> <th>Name</th> <th>Description</th></tr>
*   <tr><td>Boolean</td> <td>opennlp.uima.tokenizer.IsSkipAlphaNumerics</td></tr>
* </table>
*/
public final class TokenizerTrainer extends CasConsumer_ImplBase {

  public static final String IS_ALPHA_NUMERIC_OPTIMIZATION =
      "opennlp.uima.tokenizer.IsAlphaNumericOptimization";

  private List<TokenSample> tokenSamples = new ArrayList<TokenSample>();

  private UimaContext mContext;

  private Type mSentenceType;

  private Type mTokenType;

  private String mModelName;

  private String additionalTrainingDataFile;

  private String additionalTrainingDataEncoding;

  private String language;

  private Boolean isSkipAlphaNumerics;

  private Logger mLogger;

  private String sampleTraceFileEncoding;

  private File sampleTraceFile;

  /**
   * Initializes the current instance.
   */
  public void initialize() throws ResourceInitializationException {

  super.initialize();

    mContext = getUimaContext();

    mLogger = mContext.getLogger();

    if (mLogger.isLoggable(Level.INFO)) {
      mLogger.log(Level.INFO, "Initializing the OpenNLP Tokenizer trainer.");
    }

    mModelName = CasConsumerUtil.getRequiredStringParameter(mContext,
        UimaUtil.MODEL_PARAMETER);

    language = CasConsumerUtil.getRequiredStringParameter(mContext,
        UimaUtil.LANGUAGE_PARAMETER);

    isSkipAlphaNumerics =
        CasConsumerUtil.getOptionalBooleanParameter(
        mContext, IS_ALPHA_NUMERIC_OPTIMIZATION);

    if (isSkipAlphaNumerics == null) {
      isSkipAlphaNumerics = false;
    }

    additionalTrainingDataFile = CasConsumerUtil.getOptionalStringParameter(
        getUimaContext(), UimaUtil.ADDITIONAL_TRAINING_DATA_FILE);

    // If the additional training data is specified, the encoding must be provided!
    if (additionalTrainingDataFile != null) {
      additionalTrainingDataEncoding = CasConsumerUtil.getRequiredStringParameter(
          getUimaContext(), UimaUtil.ADDITIONAL_TRAINING_DATA_ENCODING);
    }

    String sampleTraceFileName = CasConsumerUtil.getOptionalStringParameter(
            getUimaContext(), "opennlp.uima.SampleTraceFile");

    if (sampleTraceFileName != null) {
      sampleTraceFile = new File(getUimaContextAdmin().getResourceManager()
          .getDataPath() + File.separatorChar + sampleTraceFileName);
      sampleTraceFileEncoding = CasConsumerUtil.getRequiredStringParameter(
          getUimaContext(), "opennlp.uima.SampleTraceFileEncoding");
    }
  }

  /**
   * Initialize the current instance with the given type system.
   */
  public void typeSystemInit(TypeSystem typeSystem)
      throws ResourceInitializationException {

    String sentenceTypeName = CasConsumerUtil.getRequiredStringParameter(mContext,
        UimaUtil.SENTENCE_TYPE_PARAMETER);

    mSentenceType = CasConsumerUtil.getType(typeSystem, sentenceTypeName);

    String tokenTypeName = CasConsumerUtil.getRequiredStringParameter(mContext,
        UimaUtil.TOKEN_TYPE_PARAMETER);

    mTokenType = CasConsumerUtil.getType(typeSystem, tokenTypeName);
  }

  /**
   * Process the given CAS object.
   */
  public void processCas(CAS cas) {

    FSIndex<AnnotationFS> sentenceAnnotations = cas.getAnnotationIndex(mSentenceType);

    for (AnnotationFS sentence : sentenceAnnotations) {
      process(cas, sentence);
    }
  }

  private void process(CAS tcas, AnnotationFS sentence) {
    FSIndex<AnnotationFS> allTokens = tcas.getAnnotationIndex(mTokenType);

    ContainingConstraint containingConstraint =
        new ContainingConstraint(sentence);

    Iterator<AnnotationFS> containingTokens = tcas.createFilteredIterator(
        allTokens.iterator(), containingConstraint);

    List<Span> openNLPSpans = new LinkedList<Span>();

    while (containingTokens.hasNext()) {
      AnnotationFS tokenAnnotation = containingTokens.next();

      openNLPSpans.add(new Span(tokenAnnotation.getBegin()
          - sentence.getBegin(), tokenAnnotation.getEnd()
          - sentence.getBegin()));
    }

    Span[] spans = openNLPSpans.toArray(new Span[openNLPSpans.size()]);

    Arrays.sort(spans);

    tokenSamples.add(new TokenSample(sentence.getCoveredText(), spans));
  }

  /**
   * Called if the processing is finished, this method
   * does the training.
   */
  public void collectionProcessComplete(ProcessTrace arg0)
      throws ResourceProcessException, IOException {

    if (mLogger.isLoggable(Level.INFO)) {
      mLogger.log(Level.INFO, "Collected " + tokenSamples.size() +
          " token samples.");
    }

    GIS.PRINT_MESSAGES = false;

    ObjectStream<TokenSample> samples = ObjectStreamUtils.createObjectStream(tokenSamples);

    // Write stream to disk ...
    // if trace file
    // serialize events ...

    InputStream additionalTrainingDataIn = null;
    Writer samplesOut = null;
    TokenizerModel tokenModel;

    try {
      if (additionalTrainingDataFile != null) {

        if (mLogger.isLoggable(Level.INFO)) {
          mLogger.log(Level.INFO, "Using addional training data file: " + additionalTrainingDataFile);
        }

        additionalTrainingDataIn = new FileInputStream(additionalTrainingDataFile);

        ObjectStream<TokenSample> additionalSamples = new TokenSampleStream(
            new PlainTextByLineStream(new InputStreamReader(additionalTrainingDataIn, additionalTrainingDataEncoding)));

        samples = ObjectStreamUtils.createObjectStream(samples, additionalSamples);
      }

      if (sampleTraceFile != null) {
        samplesOut = new OutputStreamWriter(new FileOutputStream(sampleTraceFile), sampleTraceFileEncoding);
        samples = new SampleTraceStream<TokenSample>(samples, samplesOut);
      }

      tokenModel = TokenizerME.train(language, samples, isSkipAlphaNumerics);
    }
    finally {
      if (additionalTrainingDataIn != null)
        additionalTrainingDataIn.close();
    }

    // dereference to allow garbage collection
    tokenSamples = null;

    File modelFile = new File(getUimaContextAdmin().getResourceManager()
        .getDataPath() + File.separatorChar + mModelName);

    OpennlpUtil.serialize(tokenModel, modelFile);
  }

  /**
   * The trainer is not stateless.
   */
  public boolean isStateless() {
    return false;
  }

  /**
   * Releases allocated resources.
   */
  public void destroy() {
    // dereference to allow garbage collection
    tokenSamples = null;
  }
}
TOP

Related Classes of opennlp.uima.tokenize.TokenizerTrainer

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.