Package opennlp.tools.tokenize

Source Code of opennlp.tools.tokenize.TokenizerME

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package opennlp.tools.tokenize;

import java.io.IOException;
import java.io.ObjectStreamException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.regex.Pattern;

import opennlp.tools.dictionary.Dictionary;
import opennlp.tools.ml.model.Event;
import opennlp.tools.ml.model.MaxentModel;
import opennlp.tools.ml.model.TrainUtil;
import opennlp.tools.tokenize.lang.Factory;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.Span;
import opennlp.tools.util.TrainingParameters;
import opennlp.tools.util.model.ModelUtil;

/**
* A Tokenizer for converting raw text into separated tokens.  It uses
* Maximum Entropy to make its decisions.  The features are loosely
* based off of Jeff Reynar's UPenn thesis "Topic Segmentation:
* Algorithms and Applications.", which is available from his
* homepage: <a href="http://www.cis.upenn.edu/~jcreynar">http://www.cis.upenn.edu/~jcreynar</a>.
* <p>
* This tokenizer needs a statistical model to tokenize a text which reproduces
* the tokenization observed in the training data used to create the model.
* The {@link TokenizerModel} class encapsulates the model and provides
* methods to create it from the binary representation.
* <p>
* A tokenizer instance is not thread safe. For each thread one tokenizer
* must be instantiated which can share one <code>TokenizerModel</code> instance
* to safe memory.
* <p>
* To train a new model {{@link #train(String, ObjectStream, boolean, TrainingParameters)} method
* can be used.
* <p>
* Sample usage:
* <p>
* <code>
* InputStream modelIn;<br>
* <br>
* ...<br>
* <br>
* TokenizerModel model = TokenizerModel(modelIn);<br>
* <br>
* Tokenizer tokenizer = new TokenizerME(model);<br>
* <br>
* String tokens[] = tokenizer.tokenize("A sentence to be tokenized.");
* </code>
*
* @see Tokenizer
* @see TokenizerModel
* @see TokenSample
*/
public class TokenizerME extends AbstractTokenizer {

  /**
   * Constant indicates a token split.
   */
  public static final String SPLIT ="T";

  /**
   * Constant indicates no token split.
   */
  public static final String NO_SPLIT ="F";

  /**
   * Alpha-Numeric Pattern
   * @deprecated As of release 1.5.2, replaced by {@link Factory#getAlphanumeric(String)}
   */
  @Deprecated
  public static final Pattern alphaNumeric = Pattern.compile(Factory.DEFAULT_ALPHANUMERIC);

  private final Pattern alphanumeric;

  /**
   * The maximum entropy model to use to evaluate contexts.
   */
  private MaxentModel model;

  /**
   * The context generator.
   */
  private final TokenContextGenerator cg;

  /**
   * Optimization flag to skip alpha numeric tokens for further
   * tokenization
   */
  private boolean useAlphaNumericOptimization;

  /**
   * List of probabilities for each token returned from a call to
   * <code>tokenize</code> or <code>tokenizePos</code>.
   */
  private List<Double> tokProbs;

  private List<Span> newTokens;

  public TokenizerME(TokenizerModel model) {
    TokenizerFactory factory = model.getFactory();
    this.alphanumeric = factory.getAlphaNumericPattern();
    this.cg = factory.getContextGenerator();
    this.model = model.getMaxentModel();
    this.useAlphaNumericOptimization = factory.isUseAlphaNumericOptmization();

    newTokens = new ArrayList<Span>();
    tokProbs = new ArrayList<Double>(50);
  }

  /**
   * @deprecated use {@link TokenizerFactory} to extend the Tokenizer
   *             functionality
   */
  public TokenizerME(TokenizerModel model, Factory factory) {
    String languageCode = model.getLanguage();

    this.alphanumeric = factory.getAlphanumeric(languageCode);
    this.cg = factory.createTokenContextGenerator(languageCode,
        getAbbreviations(model.getAbbreviations()));

    this.model = model.getMaxentModel();
    useAlphaNumericOptimization = model.useAlphaNumericOptimization();

    newTokens = new ArrayList<Span>();
    tokProbs = new ArrayList<Double>(50);
  }

  private static Set<String> getAbbreviations(Dictionary abbreviations) {
    if(abbreviations == null) {
      return Collections.<String>emptySet();
    }
    return abbreviations.asStringSet();
  }

  /**
   * Returns the probabilities associated with the most recent
   * calls to {@link TokenizerME#tokenize(String)} or {@link TokenizerME#tokenizePos(String)}.
   *
   * @return probability for each token returned for the most recent
   * call to tokenize.  If not applicable an empty array is
   * returned.
   */
  public double[] getTokenProbabilities() {
    double[] tokProbArray = new double[tokProbs.size()];
    for (int i = 0; i < tokProbArray.length; i++) {
      tokProbArray[i] = tokProbs.get(i);
    }
    return tokProbArray;
  }

  /**
   * Tokenizes the string.
   *
   * @param d  The string to be tokenized.
   *
   * @return   A span array containing individual tokens as elements.
   */
  public Span[] tokenizePos(String d) {
    Span[] tokens = WhitespaceTokenizer.INSTANCE.tokenizePos(d);
    newTokens.clear();
    tokProbs.clear();
    for (int i = 0, il = tokens.length; i < il; i++) {
      Span s = tokens[i];
      String tok = d.substring(s.getStart(), s.getEnd());
      // Can't tokenize single characters
      if (tok.length() < 2) {
        newTokens.add(s);
        tokProbs.add(1d);
      }
      else if (useAlphaNumericOptimization() && alphanumeric.matcher(tok).matches()) {
        newTokens.add(s);
        tokProbs.add(1d);
      }
      else {
        int start = s.getStart();
        int end = s.getEnd();
        final int origStart = s.getStart();
        double tokenProb = 1.0;
        for (int j = origStart + 1; j < end; j++) {
          double[] probs =
            model.eval(cg.getContext(tok, j - origStart));
          String best = model.getBestOutcome(probs);
          tokenProb *= probs[model.getIndex(best)];
          if (best.equals(TokenizerME.SPLIT)) {
            newTokens.add(new Span(start, j));
            tokProbs.add(tokenProb);
            start = j;
            tokenProb = 1.0;
          }
        }
        newTokens.add(new Span(start, end));
        tokProbs.add(tokenProb);
      }
    }

    Span[] spans = new Span[newTokens.size()];
    newTokens.toArray(spans);
    return spans;
  }

  /**
   * Trains a model for the {@link TokenizerME}.
   *
   * @param samples
   *          the samples used for the training.
   * @param factory
   *          a {@link TokenizerFactory} to get resources from
   * @param mlParams
   *          the machine learning train parameters
   * @return the trained {@link TokenizerModel}
   * @throws IOException
   *           it throws an {@link IOException} if an {@link IOException} is
   *           thrown during IO operations on a temp file which is created
   *           during training. Or if reading from the {@link ObjectStream}
   *           fails.
   */
  public static TokenizerModel train(ObjectStream<TokenSample> samples, TokenizerFactory factory,
      TrainingParameters mlParams) throws IOException {

    Map<String, String> manifestInfoEntries = new HashMap<String, String>();

    ObjectStream<Event> eventStream = new TokSpanEventStream(samples,
        factory.isUseAlphaNumericOptmization(),
        factory.getAlphaNumericPattern(), factory.getContextGenerator());

    MaxentModel maxentModel = TrainUtil.train(eventStream,
        mlParams.getSettings(), manifestInfoEntries);

    return new TokenizerModel(maxentModel, manifestInfoEntries,
        factory);
  }

  /**
   * Trains a model for the {@link TokenizerME}.
   *
   * @param languageCode the language of the natural text
   * @param samples the samples used for the training.
   * @param useAlphaNumericOptimization - if true alpha numerics are skipped
   * @param mlParams the machine learning train parameters
   *
   * @return the trained {@link TokenizerModel}
   *
   * @throws IOException it throws an {@link IOException} if an {@link IOException}
   * is thrown during IO operations on a temp file which is created during training.
   * Or if reading from the {@link ObjectStream} fails.
   *
   * @deprecated Use
   *    {@link #train(ObjectStream, TokenizerFactory, TrainingParameters)}
   *    and pass in a {@link TokenizerFactory}
   */
  public static TokenizerModel train(String languageCode, ObjectStream<TokenSample> samples,
      boolean useAlphaNumericOptimization, TrainingParameters mlParams) throws IOException {
    return train(languageCode, samples, null, useAlphaNumericOptimization,
        mlParams);
  }

  /**
   * Trains a model for the {@link TokenizerME}.
   *
   * @param languageCode the language of the natural text
   * @param samples the samples used for the training.
   * @param abbreviations an abbreviations dictionary
   * @param useAlphaNumericOptimization - if true alpha numerics are skipped
   * @param mlParams the machine learning train parameters
   *
   * @return the trained {@link TokenizerModel}
   *
   * @throws IOException it throws an {@link IOException} if an {@link IOException}
   * is thrown during IO operations on a temp file which is created during training.
   * Or if reading from the {@link ObjectStream} fails.
   *
   * @deprecated Use
   *    {@link #train(ObjectStream, TokenizerFactory, TrainingParameters)}
   *    and pass in a {@link TokenizerFactory}
   */
  public static TokenizerModel train(String languageCode,
      ObjectStream<TokenSample> samples, Dictionary abbreviations,
      boolean useAlphaNumericOptimization, TrainingParameters mlParams)
      throws IOException {
    Factory factory = new Factory();

    Map<String, String> manifestInfoEntries = new HashMap<String, String>();

    ObjectStream<Event> eventStream = new TokSpanEventStream(samples,
        useAlphaNumericOptimization, factory.getAlphanumeric(languageCode),
        factory.createTokenContextGenerator(languageCode,
            getAbbreviations(abbreviations)));

    MaxentModel maxentModel = TrainUtil.train(eventStream,
        mlParams.getSettings(), manifestInfoEntries);

    return new TokenizerModel(languageCode, maxentModel, abbreviations,
        useAlphaNumericOptimization, manifestInfoEntries);
  }


  /**
   * Trains a model for the {@link TokenizerME} with a default cutoff of 5 and 100 iterations.
   *
   * @param languageCode the language of the natural text
   * @param samples the samples used for the training.
   * @param useAlphaNumericOptimization - if true alpha numerics are skipped
   *
   * @return the trained {@link TokenizerModel}
   *
   * @throws IOException it throws an {@link IOException} if an {@link IOException}
   * is thrown during IO operations on a temp file which is
   *
   * @throws ObjectStreamException if reading from the {@link ObjectStream} fails
   * created during training.
   *
   *
   * @deprecated Use
   *    {@link #train(ObjectStream, TokenizerFactory, TrainingParameters)}
   *    and pass in a {@link TokenizerFactory}
   */
  public static TokenizerModel train(String languageCode, ObjectStream<TokenSample> samples,
      boolean useAlphaNumericOptimization) throws IOException, ObjectStreamException {
    return train(languageCode, samples, useAlphaNumericOptimization, ModelUtil.createDefaultTrainingParameters());
  }

  /**
   * Returns the value of the alpha-numeric optimization flag.
   *
   * @return true if the tokenizer should use alpha-numeric optimization, false otherwise.
   */
  public boolean useAlphaNumericOptimization() {
    return useAlphaNumericOptimization;
  }
}
TOP

Related Classes of opennlp.tools.tokenize.TokenizerME

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.