Package opennlp.tools.sentdetect

Source Code of opennlp.tools.sentdetect.SentenceDetectorME

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/


package opennlp.tools.sentdetect;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;

import opennlp.tools.dictionary.Dictionary;
import opennlp.tools.ml.model.Event;
import opennlp.tools.ml.model.MaxentModel;
import opennlp.tools.ml.model.TrainUtil;
import opennlp.tools.sentdetect.lang.Factory;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.Span;
import opennlp.tools.util.StringUtil;
import opennlp.tools.util.TrainingParameters;
import opennlp.tools.util.model.ModelUtil;

/**
* A sentence detector for splitting up raw text into sentences.
* <p>
* A maximum entropy model is used to evaluate end-of-sentence characters in a
* string to determine if they signify the end of a sentence.
*/
public class SentenceDetectorME implements SentenceDetector {

  /**
   * Constant indicates a sentence split.
   */
  public static final String SPLIT ="s";

  /**
   * Constant indicates no sentence split.
   */
  public static final String NO_SPLIT ="n";

  /**
   * The maximum entropy model to use to evaluate contexts.
   */
  private MaxentModel model;

  /**
   * The feature context generator.
   */
  private final SDContextGenerator cgen;

  /**
   * The {@link EndOfSentenceScanner} to use when scanning for end of sentence offsets.
   */
  private final EndOfSentenceScanner scanner;

  /**
   * The list of probabilities associated with each decision.
   */
  private List<Double> sentProbs = new ArrayList<Double>();

  protected boolean useTokenEnd;

  /**
   * Initializes the current instance.
   *
   * @param model the {@link SentenceModel}
   */
  public SentenceDetectorME(SentenceModel model) {
    SentenceDetectorFactory sdFactory = model.getFactory();
    this.model = model.getMaxentModel();
    cgen = sdFactory.getSDContextGenerator();
    scanner = sdFactory.getEndOfSentenceScanner();
    useTokenEnd = sdFactory.isUseTokenEnd();
  }

  /**
   * @deprecated Use a {@link SentenceDetectorFactory} to extend
   *             SentenceDetector functionality.
   */
  public SentenceDetectorME(SentenceModel model, Factory factory) {
    this.model = model.getMaxentModel();
    // if the model has custom EOS characters set, use this to get the context
    // generator and the EOS scanner; otherwise use language-specific defaults
    char[] customEOSCharacters = model.getEosCharacters();
    if (customEOSCharacters == null) {
      cgen = factory.createSentenceContextGenerator(model.getLanguage(),
          getAbbreviations(model.getAbbreviations()));
      scanner = factory.createEndOfSentenceScanner(model.getLanguage());
    } else {
      cgen = factory.createSentenceContextGenerator(
          getAbbreviations(model.getAbbreviations()), customEOSCharacters);
      scanner = factory.createEndOfSentenceScanner(customEOSCharacters);
    }
    useTokenEnd = model.useTokenEnd();
  }

  private static Set<String> getAbbreviations(Dictionary abbreviations) {
    if(abbreviations == null) {
      return Collections.<String>emptySet();
    }
    return abbreviations.asStringSet();
  }

  /**
   * Detect sentences in a String.
   *
   * @param s  The string to be processed.
   *
   * @return   A string array containing individual sentences as elements.
   */
  public String[] sentDetect(String s) {
    Span[] spans = sentPosDetect(s);
    String sentences[];
    if (spans.length != 0) {

      sentences = new String[spans.length];

      for (int si = 0; si < spans.length; si++) {
        sentences[si] = spans[si].getCoveredText(s).toString();
      }
    }
    else {
      sentences = new String[] {};
    }
    return sentences;
  }

  private int getFirstWS(String s, int pos) {
    while (pos < s.length() && !StringUtil.isWhitespace(s.charAt(pos)))
      pos++;
    return pos;
  }

  private int getFirstNonWS(String s, int pos) {
    while (pos < s.length() && StringUtil.isWhitespace(s.charAt(pos)))
      pos++;
    return pos;
  }

  /**
   * Detect the position of the first words of sentences in a String.
   *
   * @param s  The string to be processed.
   * @return   A integer array containing the positions of the end index of
   *          every sentence
   *
   */
  public Span[] sentPosDetect(String s) {
    sentProbs.clear();
    StringBuffer sb = new StringBuffer(s);
    List<Integer> enders = scanner.getPositions(s);
    List<Integer> positions = new ArrayList<Integer>(enders.size());

    for (int i = 0, end = enders.size(), index = 0; i < end; i++) {
      Integer candidate = enders.get(i);
      int cint = candidate;
      // skip over the leading parts of non-token final delimiters
      int fws = getFirstWS(s,cint + 1);
      if (i + 1 < end && enders.get(i + 1) < fws) {
        continue;
      }
      if(positions.size() > 0 && cint < positions.get(positions.size()-1)) continue;

      double[] probs = model.eval(cgen.getContext(sb, cint));
      String bestOutcome = model.getBestOutcome(probs);

      if (bestOutcome.equals(SPLIT) && isAcceptableBreak(s, index, cint)) {
        if (index != cint) {
          if (useTokenEnd) {
            positions.add(getFirstNonWS(s, getFirstWS(s,cint + 1)));
          }
          else {
            positions.add(getFirstNonWS(s, cint + 1));
          }
          sentProbs.add(probs[model.getIndex(bestOutcome)]);
        }

        index = cint + 1;
      }
    }

    int[] starts = new int[positions.size()];
    for (int i = 0; i < starts.length; i++) {
      starts[i] = positions.get(i);
    }

    // string does not contain sentence end positions
    if (starts.length == 0) {

        // remove leading and trailing whitespace
        int start = 0;
        int end = s.length();

        while (start < s.length() && StringUtil.isWhitespace(s.charAt(start)))
          start++;

        while (end > 0 && StringUtil.isWhitespace(s.charAt(end - 1)))
          end--;

        if ((end - start) > 0) {
          sentProbs.add(1d);
          return new Span[] {new Span(start, end)};
        }
        else
          return new Span[0];
    }

    // Convert the sentence end indexes to spans

    boolean leftover = starts[starts.length - 1] != s.length();
    Span[] spans = new Span[leftover? starts.length + 1 : starts.length];

    for (int si=0; si < starts.length; si++) {
      int start;

      if (si==0) {
        start = 0;
      }
      else {
        start = starts[si-1];
      }

      // A span might contain only white spaces, in this case the length of
      // the span will be zero after trimming and should be ignored.
      Span span = new Span(start, starts[si]).trim(s);
      if (span.length() > 0) {
        spans[si] = span;
      }
      else {
        sentProbs.remove(si);
      }
    }

    if (leftover) {
      Span span = new Span(starts[starts.length-1],s.length()).trim(s);
      if (span.length() > 0) {
        spans[spans.length-1] = span;
        sentProbs.add(1d);
      }
    }
    /**
     * set the prob for each span
     */
    for (int i = 0; i < spans.length; i++) {
      double prob = sentProbs.get(i);
      spans[i]= new Span(spans[i], prob);     
     
    }

    return spans;
  }

  /**
   * Returns the probabilities associated with the most recent
   * calls to sentDetect().
   *
   * @return probability for each sentence returned for the most recent
   * call to sentDetect.  If not applicable an empty array is
   * returned.
   */
  public double[] getSentenceProbabilities() {
    double[] sentProbArray = new double[sentProbs.size()];
    for (int i = 0; i < sentProbArray.length; i++) {
      sentProbArray[i] = sentProbs.get(i);
    }
    return sentProbArray;
  }

  /**
   * Allows subclasses to check an overzealous (read: poorly
   * trained) model from flagging obvious non-breaks as breaks based
   * on some boolean determination of a break's acceptability.
   *
   * <p>The implementation here always returns true, which means
   * that the MaxentModel's outcome is taken as is.</p>
   *
   * @param s the string in which the break occurred.
   * @param fromIndex the start of the segment currently being evaluated
   * @param candidateIndex the index of the candidate sentence ending
   * @return true if the break is acceptable
   */
  protected boolean isAcceptableBreak(String s, int fromIndex, int candidateIndex) {
    return true;
  }

  /**
   * @deprecated Use
   *             {@link #train(String, ObjectStream, SentenceDetectorFactory, TrainingParameters)}
   *             and pass in af {@link SentenceDetectorFactory}.
   */
  public static SentenceModel train(String languageCode,
      ObjectStream<SentenceSample> samples, boolean useTokenEnd,
      Dictionary abbreviations, TrainingParameters mlParams) throws IOException {
    SentenceDetectorFactory sdFactory = new SentenceDetectorFactory(
        languageCode, useTokenEnd, abbreviations, null);
    return train(languageCode, samples, sdFactory, mlParams);
  }

  public static SentenceModel train(String languageCode,
      ObjectStream<SentenceSample> samples, SentenceDetectorFactory sdFactory,
      TrainingParameters mlParams) throws IOException {

    Map<String, String> manifestInfoEntries = new HashMap<String, String>();

    // TODO: Fix the EventStream to throw exceptions when training goes wrong
    ObjectStream<Event> eventStream = new SDEventStream(samples,
        sdFactory.getSDContextGenerator(), sdFactory.getEndOfSentenceScanner());

    MaxentModel sentModel = TrainUtil.train(eventStream,
        mlParams.getSettings(), manifestInfoEntries);

    return new SentenceModel(languageCode, sentModel, manifestInfoEntries,
        sdFactory);
  }

  /**
   * @deprecated Use
   *             {@link #train(String, ObjectStream, SentenceDetectorFactory, TrainingParameters)}
   *             and pass in af {@link SentenceDetectorFactory}.
   */
  public static SentenceModel train(String languageCode, ObjectStream<SentenceSample> samples,
      boolean useTokenEnd, Dictionary abbreviations) throws IOException {
    return train(languageCode, samples, useTokenEnd, abbreviations, ModelUtil.createDefaultTrainingParameters());
  }
}
TOP

Related Classes of opennlp.tools.sentdetect.SentenceDetectorME

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.