Package tutorial.distancefunction

Source Code of tutorial.distancefunction.MultiLPNorm$Parameterizer

package tutorial.distancefunction;

import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.type.SimpleTypeInformation;
import de.lmu.ifi.dbs.elki.data.type.VectorFieldTypeInformation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractVectorDoubleDistanceFunction;
import de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ArrayLikeUtil;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.DoubleListParameter;

/*
This file is part of ELKI:
Environment for Developing KDD-Applications Supported by Index-Structures

Copyright (C) 2012
Ludwig-Maximilians-Universität München
Lehr- und Forschungseinheit für Datenbanksysteme
ELKI Development Team

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/**
* Tutorial example for ELKI.
*
* See <a
* href="http://elki.dbs.ifi.lmu.de/wiki/Tutorial/DistanceFunctions">Distance
* function tutorial</a>
*
* @author Erich Schubert
*/
public class MultiLPNorm extends AbstractVectorDoubleDistanceFunction {
  /**
   * The exponents
   */
  double[] ps;

  /**
   * Normalization factor (count(ps)/sum(ps))
   */
  double pinv;

  /**
   * Constructor.
   *
   * @param ps The exponents
   */
  public MultiLPNorm(double[] ps) {
    super();
    double sum = 0.0;
    for(int dim = 0; dim < ps.length; dim++) {
      assert (ps[dim] >= 0) : "Negative exponents are not allowed.";
      sum += ps[dim];
    }
    assert (sum > 0) : "At least one exponent should be different from 0!";

    this.ps = ps;
    this.pinv = ps.length / sum;
  }

  @Override
  public double doubleDistance(NumberVector<?, ?> o1, NumberVector<?, ?> o2) {
    assert o1.getDimensionality() == ps.length : "Inappropriate dimensionality!";
    assert o2.getDimensionality() == ps.length : "Inappropriate dimensionality!";

    double sum = 0.0;
    for(int dim = 0; dim < ps.length; dim++) {
      if(ps[dim] > 0) {
        final double delta = Math.abs(o1.doubleValue(dim + 1) - o2.doubleValue(dim + 1));
        sum += Math.pow(delta, ps[dim]);
      }
    }
    return Math.pow(sum, pinv);
  }

  @Override
  public SimpleTypeInformation<? super NumberVector<?, ?>> getInputTypeRestriction() {
    return new VectorFieldTypeInformation<NumberVector<?, ?>>(NumberVector.class, ps.length);
  }

  /**
   * Parameterization class example
   *
   * @author Erich Schubert
   */
  public static class Parameterizer extends AbstractParameterizer {
    /**
     * Option ID for the exponents <code>
     *  -multinorm.ps
     * </code>
     */
    public static final OptionID EXPONENTS_ID = OptionID.getOrCreateOptionID("multinorm.ps", "The exponents to use for this distance function");

    /**
     * P exponents
     */
    double[] ps;

    @Override
    protected void makeOptions(Parameterization config) {
      super.makeOptions(config);
      DoubleListParameter ps_param = new DoubleListParameter(EXPONENTS_ID);
      if(config.grab(ps_param)) {
        ps = ArrayLikeUtil.toPrimitiveDoubleArray(ps_param.getValue());
      }
    }

    @Override
    protected MultiLPNorm makeInstance() {
      return new MultiLPNorm(ps);
    }
  }
}
TOP

Related Classes of tutorial.distancefunction.MultiLPNorm$Parameterizer

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.