Package java.lang

Source Code of java.lang.Thread

/*
* @(#)Thread.java  1.131 03/07/11
*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package java.lang;

import java.security.AccessController;
import java.security.AccessControlContext;
import java.util.Map;
import java.util.HashMap;
import java.util.Collections;
import sun.nio.ch.Interruptible;
import sun.security.util.SecurityConstants;


/**
* A <i>thread</i> is a thread of execution in a program. The Java
* Virtual Machine allows an application to have multiple threads of
* execution running concurrently.
* <p>
* Every thread has a priority. Threads with higher priority are
* executed in preference to threads with lower priority. Each thread
* may or may not also be marked as a daemon. When code running in
* some thread creates a new <code>Thread</code> object, the new
* thread has its priority initially set equal to the priority of the
* creating thread, and is a daemon thread if and only if the
* creating thread is a daemon.
* <p>
* When a Java Virtual Machine starts up, there is usually a single
* non-daemon thread (which typically calls the method named
* <code>main</code> of some designated class). The Java Virtual
* Machine continues to execute threads until either of the following
* occurs:
* <ul>
* <li>The <code>exit</code> method of class <code>Runtime</code> has been
*     called and the security manager has permitted the exit operation
*     to take place.
* <li>All threads that are not daemon threads have died, either by
*     returning from the call to the <code>run</code> method or by
*     throwing an exception that propagates beyond the <code>run</code>
*     method.
* </ul>
* <p>
* There are two ways to create a new thread of execution. One is to
* declare a class to be a subclass of <code>Thread</code>. This
* subclass should override the <code>run</code> method of class
* <code>Thread</code>. An instance of the subclass can then be
* allocated and started. For example, a thread that computes primes
* larger than a stated value could be written as follows:
* <p><hr><blockquote><pre>
*     class PrimeThread extends Thread {
*         long minPrime;
*         PrimeThread(long minPrime) {
*             this.minPrime = minPrime;
*         }
*
*         public void run() {
*             // compute primes larger than minPrime
*             &nbsp;.&nbsp;.&nbsp;.
*         }
*     }
* </pre></blockquote><hr>
* <p>
* The following code would then create a thread and start it running:
* <p><blockquote><pre>
*     PrimeThread p = new PrimeThread(143);
*     p.start();
* </pre></blockquote>
* <p>
* The other way to create a thread is to declare a class that
* implements the <code>Runnable</code> interface. That class then
* implements the <code>run</code> method. An instance of the class can
* then be allocated, passed as an argument when creating
* <code>Thread</code>, and started. The same example in this other
* style looks like the following:
* <p><hr><blockquote><pre>
*     class PrimeRun implements Runnable {
*         long minPrime;
*         PrimeRun(long minPrime) {
*             this.minPrime = minPrime;
*         }
*
*         public void run() {
*             // compute primes larger than minPrime
*             &nbsp;.&nbsp;.&nbsp;.
*         }
*     }
* </pre></blockquote><hr>
* <p>
* The following code would then create a thread and start it running:
* <p><blockquote><pre>
*     PrimeRun p = new PrimeRun(143);
*     new Thread(p).start();
* </pre></blockquote>
* <p>
* Every thread has a name for identification purposes. More than
* one thread may have the same name. If a name is not specified when
* a thread is created, a new name is generated for it.
*
* @author  unascribed
* @version 1.131, 07/11/03
* @see     java.lang.Runnable
* @see     java.lang.Runtime#exit(int)
* @see     java.lang.Thread#run()
* @see     java.lang.Thread#stop()
* @since   JDK1.0
*/
public
class Thread implements Runnable {
    /* Make sure registerNatives is the first thing <clinit> does. */
    private static native void registerNatives();
    static {
        registerNatives();
    }

    private char  name[];
    private int         priority;
    private Thread  threadQ;
    private long  eetop;

    /* Whether or not to single_step this thread. */
    private boolean  single_step;

    /* Whether or not the thread is a daemon thread. */
    private boolean  daemon = false;

    /* Whether or not this thread was asked to exit before it runs.*/
    private boolean  stillborn = false;

    /* What will be run. */
    private Runnable target;

    /* The group of this thread */
    private ThreadGroup  group;

    /* The context ClassLoader for this thread */
    private ClassLoader contextClassLoader;

    /* The inherited AccessControlContext of this thread */
    private AccessControlContext inheritedAccessControlContext;

    /* For autonumbering anonymous threads. */
    private static int threadInitNumber;
    private static synchronized int nextThreadNum() {
  return threadInitNumber++;
    }

    /* ThreadLocal values pertaining to this thread. This map is maintained
     * by the ThreadLocal class. */
    ThreadLocal.ThreadLocalMap threadLocals = null;

    /*
     * InheritableThreadLocal values pertaining to this thread. This map is
     * maintained by the InheritableThreadLocal class. 
     */
    ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;

    /*
     * The requested stack size for this thread, or 0 if the creator did
     * not specify a stack size.  It is up to the VM to do whatever it
     * likes with this number; some VMs will ignore it.
     */
    private long stackSize;

    /*
     * Thread ID
     */
    private long tid;

    /* For generating thread ID */
    private static long threadSeqNumber;

    private static synchronized long nextThreadID() {
  return ++threadSeqNumber;
    }

    /* The object in which this thread is blocked in an interruptible I/O
     * operation, if any.  The blocker's interrupt method() should be invoked
     * before setting this thread's interrupt status.
     */
    private volatile Interruptible blocker;

    /* Set the blocker field; invoked via reflection magic from java.nio code
     */
    private void blockedOn(Interruptible b) {
  blocker = b;
    }

    /**
     * The minimum priority that a thread can have.
     */
    public final static int MIN_PRIORITY = 1;

   /**
     * The default priority that is assigned to a thread.
     */
    public final static int NORM_PRIORITY = 5;

    /**
     * The maximum priority that a thread can have.
     */
    public final static int MAX_PRIORITY = 10;

    /**
     * Returns a reference to the currently executing thread object.
     *
     * @return  the currently executing thread.
     */
    public static native Thread currentThread();

    /**
     * Causes the currently executing thread object to temporarily pause
     * and allow other threads to execute.
     */
    public static native void yield();

    /** 
     * Causes the currently executing thread to sleep (temporarily cease
     * execution) for the specified number of milliseconds. The thread
     * does not lose ownership of any monitors.
     *
     * @param      millis   the length of time to sleep in milliseconds.
     * @exception  InterruptedException if another thread has interrupted
     *             the current thread.  The <i>interrupted status</i> of the
     *             current thread is cleared when this exception is thrown.
     * @see        java.lang.Object#notify()
     */
    public static native void sleep(long millis) throws InterruptedException;

    /**
     * Causes the currently executing thread to sleep (cease execution)
     * for the specified number of milliseconds plus the specified number
     * of nanoseconds. The thread does not lose ownership of any monitors.
     *
     * @param      millis   the length of time to sleep in milliseconds.
     * @param      nanos    0-999999 additional nanoseconds to sleep.
     * @exception  IllegalArgumentException  if the value of millis is
     *             negative or the value of nanos is not in the range
     *             0-999999.
     * @exception  InterruptedException if another thread has interrupted
     *             the current thread.  The <i>interrupted status</i> of the
     *             current thread is cleared when this exception is thrown.
     * @see        java.lang.Object#notify()
     */
    public static void sleep(long millis, int nanos)
    throws InterruptedException {
  if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
  }

  if (nanos < 0 || nanos > 999999) {
            throw new IllegalArgumentException(
        "nanosecond timeout value out of range");
  }

  if (nanos >= 500000 || (nanos != 0 && millis == 0)) {
      millis++;
  }

  sleep(millis);
    }

    /**
     * Initialize a Thread.
     *
     * @param g the Thread group
     * @param target the object whose run() method gets called
     * @param name the name of the new Thread
     * @param stackSize the desired stack size for the new thread, or
     *        zero to indicate that this parameter is to be ignored.
     */
    private void init(ThreadGroup g, Runnable target, String name,
                      long stackSize) {
  Thread parent = currentThread();
  if (g == null) {
      /* Determine if it's an applet or not */
      SecurityManager security = System.getSecurityManager();
     
      /* If there is a security manager, ask the security manager
         what to do. */
      if (security != null) {
    g = security.getThreadGroup();
      }

      /* If the security doesn't have a strong opinion of the matter
         use the parent thread group. */
      if (g == null) {
    g = parent.getThreadGroup();
      }
  }

  /* checkAccess regardless of whether or not threadgroup is
           explicitly passed in. */
  g.checkAccess();     

  this.group = g;
  this.daemon = parent.isDaemon();
  this.priority = parent.getPriority();
  this.name = name.toCharArray();
  this.contextClassLoader = parent.contextClassLoader;
  this.inheritedAccessControlContext = AccessController.getContext();
  this.target = target;
  setPriority(priority);
        if (parent.inheritableThreadLocals != null)
          this.inheritableThreadLocals =
            ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);

        /* Stash the specified stack size in case the VM cares */
        this.stackSize = stackSize;

        /* Set thread ID */
        tid = nextThreadID();
  g.add(this);
    }

   /**
     * Allocates a new <code>Thread</code> object. This constructor has
     * the same effect as <code>Thread(null, null,</code>
     * <i>gname</i><code>)</code>, where <b><i>gname</i></b> is
     * a newly generated name. Automatically generated names are of the
     * form <code>"Thread-"+</code><i>n</i>, where <i>n</i> is an integer.
     *
     * @see     java.lang.Thread#Thread(java.lang.ThreadGroup,
     *          java.lang.Runnable, java.lang.String)
     */
    public Thread() {
  init(null, null, "Thread-" + nextThreadNum(), 0);
    }

    /**
     * Allocates a new <code>Thread</code> object. This constructor has
     * the same effect as <code>Thread(null, target,</code>
     * <i>gname</i><code>)</code>, where <i>gname</i> is
     * a newly generated name. Automatically generated names are of the
     * form <code>"Thread-"+</code><i>n</i>, where <i>n</i> is an integer.
     *
     * @param   target   the object whose <code>run</code> method is called.
     * @see     java.lang.Thread#Thread(java.lang.ThreadGroup,
     *          java.lang.Runnable, java.lang.String)
     */
    public Thread(Runnable target) {
  init(null, target, "Thread-" + nextThreadNum(), 0);
    }

    /**
     * Allocates a new <code>Thread</code> object. This constructor has
     * the same effect as <code>Thread(group, target,</code>
     * <i>gname</i><code>)</code>, where <i>gname</i> is
     * a newly generated name. Automatically generated names are of the
     * form <code>"Thread-"+</code><i>n</i>, where <i>n</i> is an integer.
     *
     * @param      group    the thread group.
     * @param      target   the object whose <code>run</code> method is called.
     * @exception  SecurityException  if the current thread cannot create a
     *             thread in the specified thread group.
     * @see        java.lang.Thread#Thread(java.lang.ThreadGroup,
     *             java.lang.Runnable, java.lang.String)
     */
    public Thread(ThreadGroup group, Runnable target) {
  init(group, target, "Thread-" + nextThreadNum(), 0);
    }

    /**
     * Allocates a new <code>Thread</code> object. This constructor has
     * the same effect as <code>Thread(null, null, name)</code>.
     *
     * @param   name   the name of the new thread.
     * @see     java.lang.Thread#Thread(java.lang.ThreadGroup,
     *          java.lang.Runnable, java.lang.String)
     */
    public Thread(String name) {
  init(null, null, name, 0);
    }

    /**
     * Allocates a new <code>Thread</code> object. This constructor has
     * the same effect as <code>Thread(group, null, name)</code>
     *
     * @param      group   the thread group.
     * @param      name    the name of the new thread.
     * @exception  SecurityException  if the current thread cannot create a
     *               thread in the specified thread group.
     * @see        java.lang.Thread#Thread(java.lang.ThreadGroup,
     *          java.lang.Runnable, java.lang.String)
     */
    public Thread(ThreadGroup group, String name) {
  init(group, null, name, 0);
    }

    /**
     * Allocates a new <code>Thread</code> object. This constructor has
     * the same effect as <code>Thread(null, target, name)</code>.
     *
     * @param   target   the object whose <code>run</code> method is called.
     * @param   name     the name of the new thread.
     * @see     java.lang.Thread#Thread(java.lang.ThreadGroup,
     *          java.lang.Runnable, java.lang.String)
     */
    public Thread(Runnable target, String name) {
  init(null, target, name, 0);
    }

    /**
     * Allocates a new <code>Thread</code> object so that it has
     * <code>target</code> as its run object, has the specified
     * <code>name</code> as its name, and belongs to the thread group
     * referred to by <code>group</code>.
     * <p>
     * If <code>group</code> is <code>null</code> and there is a
     * security manager, the group is determined by the security manager's
     * <code>getThreadGroup</code> method. If <code>group</code> is
     * <code>null</code> and there is not a security manager, or the
     * security manager's <code>getThreadGroup</code> method returns
     * <code>null</code>, the group is set to be the same ThreadGroup
     * as the thread that is creating the new thread.
     *
     * <p>If there is a security manager, its <code>checkAccess</code>
     * method is called with the ThreadGroup as its argument.
     * This may result in a SecurityException.
     * <p>
     * If the <code>target</code> argument is not <code>null</code>, the
     * <code>run</code> method of the <code>target</code> is called when
     * this thread is started. If the target argument is
     * <code>null</code>, this thread's <code>run</code> method is called
     * when this thread is started.
     * <p>
     * The priority of the newly created thread is set equal to the
     * priority of the thread creating it, that is, the currently running
     * thread. The method <code>setPriority</code> may be used to
     * change the priority to a new value.
     * <p>
     * The newly created thread is initially marked as being a daemon
     * thread if and only if the thread creating it is currently marked
     * as a daemon thread. The method <code>setDaemon </code> may be used
     * to change whether or not a thread is a daemon.
     *
     * @param      group     the thread group.
     * @param      target   the object whose <code>run</code> method is called.
     * @param      name     the name of the new thread.
     * @exception  SecurityException  if the current thread cannot create a
     *               thread in the specified thread group.
     * @see        java.lang.Runnable#run()
     * @see        java.lang.Thread#run()
     * @see        java.lang.Thread#setDaemon(boolean)
     * @see        java.lang.Thread#setPriority(int)
     * @see        java.lang.ThreadGroup#checkAccess()
     * @see        SecurityManager#checkAccess
     */
    public Thread(ThreadGroup group, Runnable target, String name) {
  init(group, target, name, 0);
    }

    /**
     * Allocates a new <code>Thread</code> object so that it has
     * <code>target</code> as its run object, has the specified
     * <code>name</code> as its name, belongs to the thread group referred to
     * by <code>group</code>, and has the specified <i>stack size</i>.
     *
     * <p>This constructor is identical to {@link
     * #Thread(ThreadGroup,Runnable,String)} with the exception of the fact
     * that it allows the thread stack size to be specified.  The stack size
     * is the approximate number of bytes of address space that the virtual
     * machine is to allocate for this thread's stack.  <b>The effect of the
     * <tt>stackSize</tt> parameter, if any, is highly platform dependent.</b>
     *
     * <p>On some platforms, specifying a higher value for the
     * <tt>stackSize</tt> parameter may allow a thread to achieve greater
     * recursion depth before throwing a {@link StackOverflowError}.
     * Similarly, specifying a lower value may allow a greater number of
     * threads to exist concurrently without throwing an an {@link
     * OutOfMemoryError} (or other internal error).  The details of
     * the relationship between the value of the <tt>stackSize</tt> parameter
     * and the maximum recursion depth and concurrency level are
     * platform-dependent.  <b>On some platforms, the value of the
     * <tt>stackSize</tt> parameter may have no effect whatsoever.</b>
     *
     * <p>The virtual machine is free to treat the <tt>stackSize</tt>
     * parameter as a suggestion.  If the specified value is unreasonably low
     * for the platform, the virtual machine may instead use some
     * platform-specific minimum value; if the specified value is unreasonably
     * high, the virtual machine may instead use some platform-specific
     * maximum.  Likewise, the virtual machine is free to round the specified
     * value up or down as it sees fit (or to ignore it completely).
     *
     * <p>Specifying a value of zero for the <tt>stackSize</tt> parameter will
     * cause this constructor to behave exactly like the
     * <tt>Thread(ThreadGroup, Runnable, String)</tt> constructor.
     *
     * <p><i>Due to the platform-dependent nature of the behavior of this
     * constructor, extreme care should be exercised in its use.
     * The thread stack size necessary to perform a given computation will
     * likely vary from one JRE implementation to another.  In light of this
     * variation, careful tuning of the stack size parameter may be required,
     * and the tuning may need to be repeated for each JRE implementation on
     * which an application is to run.</i>
     *
     * <p>Implementation note: Java platform implementers are encouraged to
     * document their implementation's behavior with respect to the
     * <tt>stackSize parameter</tt>.
     *
     * @param      group    the thread group.
     * @param      target   the object whose <code>run</code> method is called.
     * @param      name     the name of the new thread.
     * @param      stackSize the desired stack size for the new thread, or
     *             zero to indicate that this parameter is to be ignored.
     * @exception  SecurityException  if the current thread cannot create a
     *               thread in the specified thread group.
     */
    public Thread(ThreadGroup group, Runnable target, String name,
                  long stackSize) {
  init(group, target, name, stackSize);
    }

    /**
     * Causes this thread to begin execution; the Java Virtual Machine
     * calls the <code>run</code> method of this thread.
     * <p>
     * The result is that two threads are running concurrently: the
     * current thread (which returns from the call to the
     * <code>start</code> method) and the other thread (which executes its
     * <code>run</code> method).
     *
     * @exception  IllegalThreadStateException  if the thread was already
     *               started.
     * @see        java.lang.Thread#run()
     * @see        java.lang.Thread#stop()
     */
    public synchronized native void start();

    /**
     * If this thread was constructed using a separate
     * <code>Runnable</code> run object, then that
     * <code>Runnable</code> object's <code>run</code> method is called;
     * otherwise, this method does nothing and returns.
     * <p>
     * Subclasses of <code>Thread</code> should override this method.
     *
     * @see     java.lang.Thread#start()
     * @see     java.lang.Thread#stop()
     * @see     java.lang.Thread#Thread(java.lang.ThreadGroup,
     *          java.lang.Runnable, java.lang.String)
     * @see     java.lang.Runnable#run()
     */
    public void run() {
  if (target != null) {
      target.run();
  }
    }

    /**
     * This method is called by the system to give a Thread
     * a chance to clean up before it actually exits.
     */
    private void exit() {
  if (group != null) {
      group.remove(this);
      group = null;
  }
  /* Aggressively null object connected to Thread: see bug 4006245 */
  target = null;
    }

    /**
     * Forces the thread to stop executing.
     * <p>
     * If there is a security manager installed, its <code>checkAccess</code>
     * method is called with <code>this</code>
     * as its argument. This may result in a
     * <code>SecurityException</code> being raised (in the current thread).
     * <p>
     * If this thread is different from the current thread (that is, the current
     * thread is trying to stop a thread other than itself), the
     * security manager's <code>checkPermission</code> method (with a
     * <code>RuntimePermission("stopThread")</code> argument) is called in
     * addition.
     * Again, this may result in throwing a
     * <code>SecurityException</code> (in the current thread).
     * <p>
     * The thread represented by this thread is forced to stop whatever
     * it is doing abnormally and to throw a newly created
     * <code>ThreadDeath</code> object as an exception.
     * <p>
     * It is permitted to stop a thread that has not yet been started.
     * If the thread is eventually started, it immediately terminates.
     * <p>
     * An application should not normally try to catch
     * <code>ThreadDeath</code> unless it must do some extraordinary
     * cleanup operation (note that the throwing of
     * <code>ThreadDeath</code> causes <code>finally</code> clauses of
     * <code>try</code> statements to be executed before the thread
     * officially dies).  If a <code>catch</code> clause catches a
     * <code>ThreadDeath</code> object, it is important to rethrow the
     * object so that the thread actually dies.
     * <p>
     * The top-level error handler that reacts to otherwise uncaught
     * exceptions does not print out a message or otherwise notify the
     * application if the uncaught exception is an instance of
     * <code>ThreadDeath</code>.
     *
     * @exception  SecurityException  if the current thread cannot
     *               modify this thread.
     * @see        java.lang.Thread#interrupt()
     * @see        java.lang.Thread#checkAccess()
     * @see        java.lang.Thread#run()
     * @see        java.lang.Thread#start()
     * @see        java.lang.ThreadDeath
     * @see        java.lang.ThreadGroup#uncaughtException(java.lang.Thread,
     *             java.lang.Throwable)
     * @see        SecurityManager#checkAccess(Thread)
     * @see        SecurityManager#checkPermission
     * @deprecated This method is inherently unsafe.  Stopping a thread with
     *       Thread.stop causes it to unlock all of the monitors that it
     *       has locked (as a natural consequence of the unchecked
     *       <code>ThreadDeath</code> exception propagating up the stack).  If
     *       any of the objects previously protected by these monitors were in
     *       an inconsistent state, the damaged objects become visible to
     *       other threads, potentially resulting in arbitrary behavior.  Many
     *       uses of <code>stop</code> should be replaced by code that simply
     *       modifies some variable to indicate that the target thread should
     *       stop running.  The target thread should check this variable 
     *       regularly, and return from its run method in an orderly fashion
     *       if the variable indicates that it is to stop running.  If the
     *       target thread waits for long periods (on a condition variable,
     *       for example), the <code>interrupt</code> method should be used to
     *       interrupt the wait.
     *       For more information, see
     *       <a href="{@docRoot}/../guide/misc/threadPrimitiveDeprecation.html">Why
     *       are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
     */
    public final void stop() {
  synchronized (this) {
            //if the thread is alreay dead, return
            if (!this.isAlive()) return;
      SecurityManager security = System.getSecurityManager();
      if (security != null) {
    checkAccess();
    if (this != Thread.currentThread()) {
        security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION);
    }
      }
      resume(); // Wake up thread if it was suspended; no-op otherwise
      stop0(new ThreadDeath());
  }
    }

    /**
     * Forces the thread to stop executing.
     * <p>
     * If there is a security manager installed, the <code>checkAccess</code>
     * method of this thread is called, which may result in a
     * <code>SecurityException</code> being raised (in the current thread).
     * <p>
     * If this thread is different from the current thread (that is, the current
     * thread is trying to stop a thread other than itself) or
     * <code>obj</code> is not an instance of <code>ThreadDeath</code>, the
     * security manager's <code>checkPermission</code> method (with the
     * <code>RuntimePermission("stopThread")</code> argument) is called in
     * addition.
     * Again, this may result in throwing a
     * <code>SecurityException</code> (in the current thread).
     * <p>
     * If the argument <code>obj</code> is null, a
     * <code>NullPointerException</code> is thrown (in the current thread).
     * <p>
     * The thread represented by this thread is forced to complete
     * whatever it is doing abnormally and to throw the
     * <code>Throwable</code> object <code>obj</code> as an exception. This
     * is an unusual action to take; normally, the <code>stop</code> method
     * that takes no arguments should be used.
     * <p>
     * It is permitted to stop a thread that has not yet been started.
     * If the thread is eventually started, it immediately terminates.
     *
     * @param      obj   the Throwable object to be thrown.
     * @exception  SecurityException  if the current thread cannot modify
     *               this thread.
     * @see        java.lang.Thread#interrupt()
     * @see        java.lang.Thread#checkAccess()
     * @see        java.lang.Thread#run()
     * @see        java.lang.Thread#start()
     * @see        java.lang.Thread#stop()
     * @see        SecurityManager#checkAccess(Thread)
     * @see        SecurityManager#checkPermission
     * @deprecated This method is inherently unsafe.  See {@link #stop}
     *        (with no arguments) for details.  An additional danger of this
     *        method is that it may be used to generate exceptions that the
     *        target thread is unprepared to handle (including checked
     *        exceptions that the thread could not possibly throw, were it
     *        not for this method).
     *        For more information, see
     *        <a href="{@docRoot}/../guide/misc/threadPrimitiveDeprecation.html">Why
     *        are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
     */
    public final synchronized void stop(Throwable obj) {
  SecurityManager security = System.getSecurityManager();
  if (security != null) {
      checkAccess();
      if ((this != Thread.currentThread()) ||
    (!(obj instanceof ThreadDeath))) {
    security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION);
      }
  }
  resume(); // Wake up thread if it was suspended; no-op otherwise
  stop0(obj);
    }

    /**
     * Interrupts this thread.
     *
     * <p> First the {@link #checkAccess() checkAccess} method of this thread
     * is invoked, which may cause a {@link SecurityException} to be thrown.
     *
     * <p> If this thread is blocked in an invocation of the {@link
     * Object#wait() wait()}, {@link Object#wait(long) wait(long)}, or {@link
     * Object#wait(long, int) wait(long, int)} methods of the {@link Object}
     * class, or of the {@link #join()}, {@link #join(long)}, {@link
     * #join(long, int)}, {@link #sleep(long)}, or {@link #sleep(long, int)},
     * methods of this class, then its interrupt status will be cleared and it
     * will receive an {@link InterruptedException}.
     *
     * <p> If this thread is blocked in an I/O operation upon an {@link
     * java.nio.channels.InterruptibleChannel </code>interruptible
     * channel<code>} then the channel will be closed, the thread's interrupt
     * status will be set, and the thread will receive a {@link
     * java.nio.channels.ClosedByInterruptException}.
     *
     * <p> If this thread is blocked in a {@link java.nio.channels.Selector}
     * then the thread's interrupt status will be set and it will return
     * immediately from the selection operation, possibly with a non-zero
     * value, just as if the selector's {@link
     * java.nio.channels.Selector#wakeup wakeup} method were invoked.
     *
     * <p> If none of the previous conditions hold then this thread's interrupt
     * status will be set. </p>
     *
     * @throws  SecurityException
     *          if the current thread cannot modify this thread
     *
     * @revised 1.4
     * @spec JSR-51
     */
    public void interrupt() {
  checkAccess();
  Interruptible b = blocker;
  if (b != null) {
      b.interrupt();
  }
  interrupt0();
    }

    /**
     * Tests whether the current thread has been interrupted.  The
     * <i>interrupted status</i> of the thread is cleared by this method.  In
     * other words, if this method were to be called twice in succession, the
     * second call would return false (unless the current thread were
     * interrupted again, after the first call had cleared its interrupted
     * status and before the second call had examined it).
     *
     * @return  <code>true</code> if the current thread has been interrupted;
     *          <code>false</code> otherwise.
     * @see java.lang.Thread#isInterrupted()
     */
    public static boolean interrupted() {
  return currentThread().isInterrupted(true);
    }

    /**
     * Tests whether this thread has been interrupted.  The <i>interrupted
     * status</i> of the thread is unaffected by this method.
     *
     * @return  <code>true</code> if this thread has been interrupted;
     *          <code>false</code> otherwise.
     * @see     java.lang.Thread#interrupted()
     */
    public boolean isInterrupted() {
  return isInterrupted(false);
    }

    /**
     * Tests if some Thread has been interrupted.  The interrupted state
     * is reset or not based on the value of ClearInterrupted that is
     * passed.
     */
    private native boolean isInterrupted(boolean ClearInterrupted);

    /**
     * Destroys this thread, without any cleanup. Any monitors it has
     * locked remain locked. (This method is not implemented.)
     */
    public void destroy() {
  throw new NoSuchMethodError();
    }

    /**
     * Tests if this thread is alive. A thread is alive if it has
     * been started and has not yet died.
     *
     * @return  <code>true</code> if this thread is alive;
     *          <code>false</code> otherwise.
     */
    public final native boolean isAlive();

    /**
     * Suspends this thread.
     * <p>
     * First, the <code>checkAccess</code> method of this thread is called
     * with no arguments. This may result in throwing a
     * <code>SecurityException </code>(in the current thread).
     * <p>
     * If the thread is alive, it is suspended and makes no further
     * progress unless and until it is resumed.
     *
     * @exception  SecurityException  if the current thread cannot modify
     *               this thread.
     * @see #checkAccess
     * @deprecated   This method has been deprecated, as it is
     *   inherently deadlock-prone.  If the target thread holds a lock on the
     *   monitor protecting a critical system resource when it is suspended, no
     *   thread can access this resource until the target thread is resumed. If
     *   the thread that would resume the target thread attempts to lock this
     *   monitor prior to calling <code>resume</code>, deadlock results.  Such
     *   deadlocks typically manifest themselves as "frozen" processes.
     *   For more information, see
     *   <a href="{@docRoot}/../guide/misc/threadPrimitiveDeprecation.html">Why
     *   are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
     */
    public final void suspend() {
  checkAccess();
  suspend0();
    }

    /**
     * Resumes a suspended thread.
     * <p>
     * First, the <code>checkAccess</code> method of this thread is called
     * with no arguments. This may result in throwing a
     * <code>SecurityException</code> (in the current thread).
     * <p>
     * If the thread is alive but suspended, it is resumed and is
     * permitted to make progress in its execution.
     *
     * @exception  SecurityException  if the current thread cannot modify this
     *               thread.
     * @see        #checkAccess
     * @see        java.lang.Thread#suspend()
     * @deprecated This method exists solely for use with {@link #suspend},
     *     which has been deprecated because it is deadlock-prone.
     *     For more information, see
     *     <a href="{@docRoot}/../guide/misc/threadPrimitiveDeprecation.html">Why
     *     are Thread.stop, Thread.suspend and Thread.resume Deprecated?</a>.
     */
    public final void resume() {
  checkAccess();
  resume0();
    }

    /**
     * Changes the priority of this thread.
     * <p>
     * First the <code>checkAccess</code> method of this thread is called
     * with no arguments. This may result in throwing a
     * <code>SecurityException</code>.
     * <p>
     * Otherwise, the priority of this thread is set to the smaller of
     * the specified <code>newPriority</code> and the maximum permitted
     * priority of the thread's thread group.
     *
     * @param newPriority priority to set this thread to
     * @exception  IllegalArgumentException  If the priority is not in the
     *               range <code>MIN_PRIORITY</code> to
     *               <code>MAX_PRIORITY</code>.
     * @exception  SecurityException  if the current thread cannot modify
     *               this thread.
     * @see        #getPriority
     * @see        java.lang.Thread#checkAccess()
     * @see        java.lang.Thread#getPriority()
     * @see        java.lang.Thread#getThreadGroup()
     * @see        java.lang.Thread#MAX_PRIORITY
     * @see        java.lang.Thread#MIN_PRIORITY
     * @see        java.lang.ThreadGroup#getMaxPriority()
     */
    public final void setPriority(int newPriority) {
  checkAccess();
  if (newPriority > MAX_PRIORITY || newPriority < MIN_PRIORITY) {
      throw new IllegalArgumentException();
  }
  if (newPriority > group.getMaxPriority()) {
      newPriority = group.getMaxPriority();
  }
  setPriority0(priority = newPriority);
    }

    /**
     * Returns this thread's priority.
     *
     * @return  this thread's priority.
     * @see     #setPriority
     * @see     java.lang.Thread#setPriority(int)
     */
    public final int getPriority() {
  return priority;
    }

    /**
     * Changes the name of this thread to be equal to the argument
     * <code>name</code>.
     * <p>
     * First the <code>checkAccess</code> method of this thread is called
     * with no arguments. This may result in throwing a
     * <code>SecurityException</code>.
     *
     * @param      name   the new name for this thread.
     * @exception  SecurityException  if the current thread cannot modify this
     *               thread.
     * @see        #getName
     * @see        java.lang.Thread#checkAccess()
     * @see        java.lang.Thread#getName()
     */
    public final void setName(String name) {
  checkAccess();
  this.name = name.toCharArray();
    }

    /**
     * Returns this thread's name.
     *
     * @return  this thread's name.
     * @see     #setName
     * @see     java.lang.Thread#setName(java.lang.String)
     */
    public final String getName() {
  return String.valueOf(name);
    }

    /**
     * Returns the thread group to which this thread belongs.
     * This method returns null if this thread has died
     * (been stopped).
     *
     * @return  this thread's thread group.
     */
    public final ThreadGroup getThreadGroup() {
  return group;
    }

    /**
     * Returns the number of active threads in the current thread's thread
     * group.
     *
     * @return  the number of active threads in the current thread's thread
     *          group.
     */
    public static int activeCount() {
  return currentThread().getThreadGroup().activeCount();
    }

    /**
     * Copies into the specified array every active thread in
     * the current thread's thread group and its subgroups. This method simply
     * calls the <code>enumerate</code> method of the current thread's thread
     * group with the array argument.
     * <p>
     * First, if there is a security manager, that <code>enumerate</code>
     * method calls the security
     * manager's <code>checkAccess</code> method
     * with the thread group as its argument. This may result
     * in throwing a <code>SecurityException</code>.
     *
     * @param tarray an array of Thread objects to copy to
     * @return  the number of threads put into the array
     * @exception  SecurityException  if a security manager exists and its 
     *             <code>checkAccess</code> method doesn't allow the operation.
     * @see     java.lang.ThreadGroup#enumerate(java.lang.Thread[])
     * @see     java.lang.SecurityManager#checkAccess(java.lang.ThreadGroup)
     */
    public static int enumerate(Thread tarray[]) {
  return currentThread().getThreadGroup().enumerate(tarray);
    }

    /**
     * Counts the number of stack frames in this thread. The thread must
     * be suspended.
     *
     * @return     the number of stack frames in this thread.
     * @exception  IllegalThreadStateException  if this thread is not
     *             suspended.
     * @deprecated The definition of this call depends on {@link #suspend},
     *       which is deprecated.  Further, the results of this call
     *       were never well-defined.
     */
    public native int countStackFrames();

    /**
     * Waits at most <code>millis</code> milliseconds for this thread to
     * die. A timeout of <code>0</code> means to wait forever.
     *
     * @param      millis   the time to wait in milliseconds.
     * @exception  InterruptedException if another thread has interrupted
     *             the current thread.  The <i>interrupted status</i> of the
     *             current thread is cleared when this exception is thrown.
     */
    public final synchronized void join(long millis)
    throws InterruptedException {
  long base = System.currentTimeMillis();
  long now = 0;

  if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
  }

  if (millis == 0) {
      while (isAlive()) {
    wait(0);
      }
  } else {
      while (isAlive()) {
    long delay = millis - now;
    if (delay <= 0) {
        break;
    }
    wait(delay);
    now = System.currentTimeMillis() - base;
      }
  }
    }

    /**
     * Waits at most <code>millis</code> milliseconds plus
     * <code>nanos</code> nanoseconds for this thread to die.
     *
     * @param      millis   the time to wait in milliseconds.
     * @param      nanos    0-999999 additional nanoseconds to wait.
     * @exception  IllegalArgumentException  if the value of millis is negative
     *               the value of nanos is not in the range 0-999999.
     * @exception  InterruptedException if another thread has interrupted
     *             the current thread.  The <i>interrupted status</i> of the
     *             current thread is cleared when this exception is thrown.
     */
    public final synchronized void join(long millis, int nanos)
    throws InterruptedException {

  if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
  }

  if (nanos < 0 || nanos > 999999) {
            throw new IllegalArgumentException(
        "nanosecond timeout value out of range");
  }

  if (nanos >= 500000 || (nanos != 0 && millis == 0)) {
      millis++;
  }

  join(millis);
    }

    /**
     * Waits for this thread to die.
     *
     * @exception  InterruptedException if another thread has interrupted
     *             the current thread.  The <i>interrupted status</i> of the
     *             current thread is cleared when this exception is thrown.
     */
    public final void join() throws InterruptedException {
  join(0);
    }

    /**
     * Prints a stack trace of the current thread. This method is used
     * only for debugging.
     *
     * @see     java.lang.Throwable#printStackTrace()
     */
    public static void dumpStack() {
  new Exception("Stack trace").printStackTrace();
    }

    /**
     * Marks this thread as either a daemon thread or a user thread. The
     * Java Virtual Machine exits when the only threads running are all
     * daemon threads.
     * <p>
     * This method must be called before the thread is started.
      * <p>
     * This method first calls the <code>checkAccess</code> method
     * of this thread
     * with no arguments. This may result in throwing a
     * <code>SecurityException </code>(in the current thread).
    *
     * @param      on   if <code>true</code>, marks this thread as a
     *                  daemon thread.
     * @exception  IllegalThreadStateException  if this thread is active.
     * @exception  SecurityException  if the current thread cannot modify
     *               this thread.
     * @see        java.lang.Thread#isDaemon()
     * @see          #checkAccess
     */
    public final void setDaemon(boolean on) {
  checkAccess();
  if (isAlive()) {
      throw new IllegalThreadStateException();
  }
  daemon = on;
    }

    /**
     * Tests if this thread is a daemon thread.
     *
     * @return  <code>true</code> if this thread is a daemon thread;
     *          <code>false</code> otherwise.
     * @see     java.lang.Thread#setDaemon(boolean)
     */
    public final boolean isDaemon() {
  return daemon;
    }

    /**
     * Determines if the currently running thread has permission to
     * modify this thread.
     * <p>
     * If there is a security manager, its <code>checkAccess</code> method
     * is called with this thread as its argument. This may result in
     * throwing a <code>SecurityException</code>.
     * <p>
     * Note: This method was mistakenly non-final in JDK 1.1.
     * It has been made final in the Java 2 Platform.
     *
     * @exception  SecurityException  if the current thread is not allowed to
     *               access this thread.
     * @see        java.lang.SecurityManager#checkAccess(java.lang.Thread)
     */
    public final void checkAccess() {
  SecurityManager security = System.getSecurityManager();
  if (security != null) {
      security.checkAccess(this);
  }
    }

    /**
     * Returns a string representation of this thread, including the
     * thread's name, priority, and thread group.
     *
     * @return  a string representation of this thread.
     */
    public String toString() {
        ThreadGroup group = getThreadGroup();
  if (group != null) {
      return "Thread[" + getName() + "," + getPriority() + "," +
               group.getName() + "]";
  } else {
      return "Thread[" + getName() + "," + getPriority() + "," +
                "" + "]";
  }
    }

    /**   
     * Returns the context ClassLoader for this Thread. The context
     * ClassLoader is provided by the creator of the thread for use
     * by code running in this thread when loading classes and resources.
     * If not set, the default is the ClassLoader context of the parent
     * Thread. The context ClassLoader of the primordial thread is
     * typically set to the class loader used to load the application.
     *
     * <p>First, if there is a security manager, and the caller's class
     * loader is not null and the caller's class loader is not the same as or
     * an ancestor of the context class loader for the thread whose
     * context class loader is being requested, then the security manager's
     * <code>checkPermission</code>
     * method is called with a
     * <code>RuntimePermission("getClassLoader")</code> permission
     *  to see if it's ok to get the context ClassLoader..
     *
     * @return the context ClassLoader for this Thread
     *
     * @throws SecurityException
     *        if a security manager exists and its
     *        <code>checkPermission</code> method doesn't allow
     *        getting the context ClassLoader.
     * @see #setContextClassLoader
     * @see SecurityManager#checkPermission
     * @see java.lang.RuntimePermission
     *
     * @since 1.2
     */
    public ClassLoader getContextClassLoader() {
  if (contextClassLoader == null)
      return null;
  SecurityManager sm = System.getSecurityManager();
  if (sm != null) {
      ClassLoader ccl = ClassLoader.getCallerClassLoader();
      if (ccl != null && ccl != contextClassLoader &&
                    !contextClassLoader.isAncestor(ccl)) {
    sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
      }
  }
  return contextClassLoader;
    }

    /**  
     * Sets the context ClassLoader for this Thread. The context
     * ClassLoader can be set when a thread is created, and allows
     * the creator of the thread to provide the appropriate class loader
     * to code running in the thread when loading classes and resources.
     *
     * <p>First, if there is a security manager, its <code>checkPermission</code>
     * method is called with a
     * <code>RuntimePermission("setContextClassLoader")</code> permission
     *  to see if it's ok to set the context ClassLoader..
     *
     * @param cl the context ClassLoader for this Thread
     *
     * @exception  SecurityException  if the current thread cannot set the
     * context ClassLoader.
     * @see #getContextClassLoader
     * @see SecurityManager#checkPermission
     * @see java.lang.RuntimePermission
     *
     * @since 1.2
     */
    public void setContextClassLoader(ClassLoader cl) {
  SecurityManager sm = System.getSecurityManager();
  if (sm != null) {
      sm.checkPermission(new RuntimePermission("setContextClassLoader"));
  }
  contextClassLoader = cl;
    }

    /**
     * Returns <tt>true</tt> if and only if the current thread holds the
     * monitor lock on the specified object.
     *
     * <p>This method is designed to allow a program to assert that
     * the current thread already holds a specified lock:
     * <pre>
     *     assert Thread.holdsLock(obj);
     * </pre>
     *
     * @param  obj the object on which to test lock ownership
     * @throws NullPointerException if obj is <tt>null</tt>
     * @return <tt>true</tt> if the current thread holds the monitor lock on
     *         the specified object.
     * @since 1.4
     */
    public static native boolean holdsLock(Object obj);

    private static final StackTraceElement[] EMPTY_STACK_TRACE
        = new StackTraceElement[0];

    /**
     * Returns an array of stack trace elements representing the stack dump
     * of this thread.  This method will return a zero-length array if
     * this thread has not started or has terminated.
     * If the returned array is of non-zero length then the first element of
     * the array represents the top of the stack, which is the most recent
     * method invocation in the sequence.  The last element of the array
     * represents the bottom of the stack, which is the least recent method
     * invocation in the sequence.
     *
     * <p>If there is a security manager, and this thread is not
     * the current thread, then the security manager's
     * <tt>checkPermission</tt> method is called with a
     * <tt>RuntimePermission("getStackTrace")</tt> permission
     * to see if it's ok to get the stack trace.
     *
     * <p>Some virtual machines may, under some circumstances, omit one
     * or more stack frames from the stack trace.  In the extreme case,
     * a virtual machine that has no stack trace information concerning
     * this thread is permitted to return a zero-length array from this
     * method. 
     *
     * @return an array of <tt>StackTraceElement</tt>,
     * each represents one stack frame.
     *
     * @throws SecurityException
     *        if a security manager exists and its
     *        <tt>checkPermission</tt> method doesn't allow
     *        getting the stack trace of thread.
     * @see SecurityManager#checkPermission
     * @see java.lang.RuntimePermission
     * @see Throwable#getStackTrace
     *
     * @since 1.5
     */
    public StackTraceElement[] getStackTrace() {
        if (this != Thread.currentThread()) {
            // check for getStackTrace permission
            SecurityManager security = System.getSecurityManager();
            if (security != null) {
                security.checkPermission(
                    SecurityConstants.GET_STACK_TRACE_PERMISSION);
            }
        }

        if (!isAlive()) {
            return EMPTY_STACK_TRACE;
        }

        Thread[] threads = new Thread[1];
        threads[0] = this;
        StackTraceElement[][] result = dumpThreads(threads);
        return result[0];
    }

    /**
     * Returns a map of stack traces for all live threads.
     * The map keys are threads and each map value is an array of
     * <tt>StackTraceElement</tt> that represents the stack dump
     * of the corresponding <tt>Thread</tt>.
     * The returned stack traces are in the format specified for
     * the {@link #getStackTrace getStackTrace} method.
     *
     * <p>The threads may be executing while this method is called.
     * The stack trace of each thread only represents a snapshot and
     * each stack trace may be obtained at different time.  A zero-length
     * array will be returned in the map value if the virtual machine has
     * no stack trace information about a thread.
     *
     * <p>If there is a security manager, then the security manager's
     * <tt>checkPermission</tt> method is called with a
     * <tt>RuntimePermission("getStackTrace")</tt> permission as well as
     * <tt>RuntimePermission("modifyThreadGroup")</tt> permission
     * to see if it is ok to get the stack trace of all threads.
     *
     * @return a <tt>Map</tt> from <tt>Thread</tt> to an array of
     * <tt>StackTraceElement</tt> that represents the stack trace of
     * the corresponding thread.
     *
     * @throws SecurityException
     *        if a security manager exists and its
     *        <tt>checkPermission</tt> method doesn't allow
     *        getting the stack trace of thread.
     * @see #getStackTrace
     * @see SecurityManager#checkPermission
     * @see java.lang.RuntimePermission
     * @see Throwable#getStackTrace
     *
     * @since 1.5
     */
    public static Map getAllStackTraces() {
        // check for getStackTrace permission
        SecurityManager security = System.getSecurityManager();
        if (security != null) {
            security.checkPermission(
                SecurityConstants.GET_STACK_TRACE_PERMISSION);
            security.checkPermission(
                SecurityConstants.MODIFY_THREADGROUP_PERMISSION);
        }

        // Get a snapshot of the list of all threads
        Thread[] threads = getThreads();
        StackTraceElement[][] traces = dumpThreads(threads);
        Map m = new HashMap(threads.length);
        for (int i = 0; i < threads.length; i++) {
            if (threads[i].isAlive()) {
                StackTraceElement[] stackTrace = traces[i];
                if (stackTrace == null) {
                    stackTrace = EMPTY_STACK_TRACE;
                }
                m.put(threads[i], stackTrace);
            }
        }
        return m;
    }

    private native static StackTraceElement[][] dumpThreads(Thread[] threads);
    private native static Thread[] getThreads();

    /**
     * Returns the identifier of this Thread.  The thread ID is a positive
     * <tt>long</tt> number generated when this thread was created. 
     * The thread ID is unique and remains unchanged during its lifetime. 
     * When a thread is terminated, this thread ID may be reused.
     *
     * @return this thread's ID.
     * @since 1.5
     */
    public long getId() {
        return tid;
    }

    /* Some private helper methods */
    private native void setPriority0(int newPriority);
    private native void stop0(Object o);
    private native void suspend0();
    private native void resume0();
    private native void interrupt0();
}
TOP

Related Classes of java.lang.Thread

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.