Package com.vividsolutions.jts.operation.linemerge

Source Code of com.vividsolutions.jts.operation.linemerge.LineSequencer

/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*
* For more information, contact:
*
*     Vivid Solutions
*     Suite #1A
*     2328 Government Street
*     Victoria BC  V8T 5G5
*     Canada
*
*     (250)385-6040
*     www.vividsolutions.com
*/
package com.vividsolutions.jts.operation.linemerge;

import java.util.*;

import com.vividsolutions.jts.geom.*;
import com.vividsolutions.jts.planargraph.*;
import com.vividsolutions.jts.planargraph.algorithm.ConnectedSubgraphFinder;
import com.vividsolutions.jts.util.Assert;

/**
* Builds a sequence from a set of LineStrings so that
* they are ordered end to end.
* A sequence is a complete non-repeating list of the linear
* components of the input.  Each linestring is oriented
* so that identical endpoints are adjacent in the list.
* <p>
* A typical use case is to convert a set of
* unoriented geometric links
* from a linear network
* (e.g. such as block faces on a bus route)
* into a continuous oriented path through the network.
* <p>
* The input linestrings may form one or more connected sets.
* The input linestrings should be correctly noded, or the results may
* not be what is expected.
* The computed output is a single {@link MultiLineString} containing the ordered
* linestrings in the sequence.
* <p>
* The sequencing employs the classic <b>Eulerian path</b> graph algorithm.
* Since Eulerian paths are not uniquely determined,
* further rules are used to
* make the computed sequence preserve as much as possible of the input
* ordering.
* Within a connected subset of lines, the ordering rules are:
* <ul>
* <li>If there is degree-1 node which is the start
* node of an linestring, use that node as the start of the sequence
* <li>If there is a degree-1 node which is the end
* node of an linestring, use that node as the end of the sequence
* <li>If the sequence has no degree-1 nodes, use any node as the start
* </ul>
*
* Note that not all arrangements of lines can be sequenced.
* For a connected set of edges in a graph,
* <i>Euler's Theorem</i> states that there is a sequence containing each edge once
* <b>if and only if</b> there are no more than 2 nodes of odd degree.
* If it is not possible to find a sequence, the {@link #isSequenceable} method
* will return <code>false</code>.
*
* @version 1.7
*/
public class LineSequencer
{
  public static Geometry sequence(Geometry geom)
  {
    LineSequencer sequencer = new LineSequencer();
    sequencer.add(geom);
    return sequencer.getSequencedLineStrings();
  }
 
  /**
   * Tests whether a {@link Geometry} is sequenced correctly.
   * {@link LineString}s are trivially sequenced.
   * {@link MultiLineString}s are checked for correct sequencing.
   * Otherwise, <code>isSequenced</code> is defined
   * to be <code>true</code> for geometries that are not lineal.
   *
   * @param geom the geometry to test
   * @return <code>true</code> if the geometry is sequenced or is not lineal
   */
  public static boolean isSequenced(Geometry geom)
  {
    if (! (geom instanceof MultiLineString)) {
      return true;
    }

    MultiLineString mls = (MultiLineString) geom;
    // the nodes in all subgraphs which have been completely scanned
    Set prevSubgraphNodes = new TreeSet();

    Coordinate lastNode = null;
    List currNodes = new ArrayList();
    for (int i = 0; i < mls.getNumGeometries(); i++) {
      LineString line = (LineString) mls.getGeometryN(i);
      Coordinate startNode = line.getCoordinateN(0);
      Coordinate endNode = line.getCoordinateN(line.getNumPoints() - 1);

      /**
       * If this linestring is connected to a previous subgraph, geom is not sequenced
       */
      if (prevSubgraphNodes.contains(startNode)) return false;
      if (prevSubgraphNodes.contains(endNode)) return false;

      if (lastNode != null) {
        if (! startNode.equals(lastNode)) {
          // start new connected sequence
          prevSubgraphNodes.addAll(currNodes);
          currNodes.clear();
        }
      }
      currNodes.add(startNode);
      currNodes.add(endNode);
      lastNode = endNode;
    }
    return true;
  }

  private LineMergeGraph graph = new LineMergeGraph();
  // initialize with default, in case no lines are input
  private GeometryFactory factory = new GeometryFactory();
  private int lineCount = 0;

  private boolean isRun = false;
  private Geometry sequencedGeometry = null;
  private boolean isSequenceable = false;

  /**
   * Adds a {@link Collection} of {@link Geometry}s to be sequenced.
   * May be called multiple times.
   * Any dimension of Geometry may be added; the constituent linework will be
   * extracted.
   *
   * @param geometries a Collection of geometries to add
   */
  public void add(Collection geometries) {
    for (Iterator i = geometries.iterator(); i.hasNext(); ) {
      Geometry geometry = (Geometry) i.next();
      add(geometry);
    }
  }
  /**
   * Adds a {@link Geometry} to be sequenced.
   * May be called multiple times.
   * Any dimension of Geometry may be added; the constituent linework will be
   * extracted.
   *
   * @param geometry the geometry to add
   */
  public void add(Geometry geometry) {
    geometry.apply(new GeometryComponentFilter() {
      public void filter(Geometry component) {
        if (component instanceof LineString) {
          addLine((LineString)component);
        }
      }
    });
  }

  private void addLine(LineString lineString) {
    if (factory == null) {
      this.factory = lineString.getFactory();
    }
    graph.addEdge(lineString);
    lineCount++;
  }

  /**
   * Tests whether the arrangement of linestrings has a valid
   * sequence.
   *
   * @return <code>true</code> if a valid sequence exists.
   */
  public boolean isSequenceable()
  {
    computeSequence();
    return isSequenceable;
  }
  /**
   * Returns the {@link LineString} or {@link MultiLineString}
   * built by the sequencing process, if one exists.
   *
   * @return the sequenced linestrings,
   * or <code>null</code> if a valid sequence does not exist
   */
  public Geometry getSequencedLineStrings() {
    computeSequence();
    return sequencedGeometry;
  }

  private void computeSequence() {
    if (isRun) { return; }
    isRun = true;

    List sequences = findSequences();
    if (sequences == null)
      return;

    sequencedGeometry = buildSequencedGeometry(sequences);
    isSequenceable = true;

    int finalLineCount = sequencedGeometry.getNumGeometries();
    Assert.isTrue(lineCount == finalLineCount, "Lines were missing from result");
    Assert.isTrue(sequencedGeometry instanceof LineString
                  || sequencedGeometry instanceof MultiLineString,
                  "Result is not lineal");
  }

  private List findSequences()
  {
    List sequences = new ArrayList();
    ConnectedSubgraphFinder csFinder = new ConnectedSubgraphFinder(graph);
    List subgraphs = csFinder.getConnectedSubgraphs();
    for (Iterator i = subgraphs.iterator(); i.hasNext(); ) {
      Subgraph subgraph = (Subgraph) i.next();
      if (hasSequence(subgraph)) {
        List seq = findSequence(subgraph);
        sequences.add(seq);
      }
      else {
        // if any subgraph cannot be sequenced, abort
        return null;
      }
    }
    return sequences;
  }

  /**
   * Tests whether a complete unique path exists in a graph
   * using Euler's Theorem.
   *
   * @param graph the subgraph containing the edges
   * @return <code>true</code> if a sequence exists
   */
  private boolean hasSequence(Subgraph graph)
  {
    int oddDegreeCount = 0;
    for (Iterator i = graph.nodeIterator(); i.hasNext(); ) {
      Node node = (Node) i.next();
      if (node.getDegree() % 2 == 1)
        oddDegreeCount++;
    }
    return oddDegreeCount <= 2;
  }

  private List findSequence(Subgraph graph)
  {
    GraphComponent.setVisited(graph.edgeIterator(), false);

    Node startNode = findLowestDegreeNode(graph);
    DirectedEdge startDE = (DirectedEdge) startNode.getOutEdges().iterator().next();
    DirectedEdge startDESym = startDE.getSym();

    List seq = new LinkedList();
    ListIterator lit = seq.listIterator();
    addReverseSubpath(startDESym, lit, false);
    while (lit.hasPrevious()) {
      DirectedEdge prev = (DirectedEdge) lit.previous();
      DirectedEdge unvisitedOutDE = findUnvisitedBestOrientedDE(prev.getFromNode());
      if (unvisitedOutDE != null)
        addReverseSubpath(unvisitedOutDE.getSym(), lit, true);
    }

    /**
     * At this point, we have a valid sequence of graph DirectedEdges, but it
     * is not necessarily appropriately oriented relative to the underlying
     * geometry.
     */
    List orientedSeq = orient(seq);
    return orientedSeq;
  }

  /**
   * Finds an {@link DirectedEdge} for an unvisited edge (if any),
   * choosing the dirEdge which preserves orientation, if possible.
   *
   * @param node the node to examine
   * @return the dirEdge found, or <code>null</code> if none were unvisited
   */
  private static DirectedEdge findUnvisitedBestOrientedDE(Node node)
  {
    DirectedEdge wellOrientedDE = null;
    DirectedEdge unvisitedDE = null;
    for (Iterator i = node.getOutEdges().iterator(); i.hasNext(); ) {
       DirectedEdge de = (DirectedEdge) i.next();
       if (! de.getEdge().isVisited()) {
         unvisitedDE = de;
         if (de.getEdgeDirection())
           wellOrientedDE = de;
       }
    }
    if (wellOrientedDE != null)
      return wellOrientedDE;
    return unvisitedDE;
  }

  private void addReverseSubpath(DirectedEdge de, ListIterator lit, boolean expectedClosed)
  {
    // trace an unvisited path *backwards* from this de
    Node endNode = de.getToNode();

    Node fromNode = null;
    while (true) {
      lit.add(de.getSym());
      de.getEdge().setVisited(true);
      fromNode = de.getFromNode();
      DirectedEdge unvisitedOutDE = findUnvisitedBestOrientedDE(fromNode);
      // this must terminate, since we are continually marking edges as visited
      if (unvisitedOutDE == null)
        break;
      de = unvisitedOutDE.getSym();
    }
    if (expectedClosed) {
      // the path should end at the toNode of this de, otherwise we have an error
      Assert.isTrue(fromNode == endNode, "path not contiguous");
    }
  }

  private static Node findLowestDegreeNode(Subgraph graph)
  {
    int minDegree = Integer.MAX_VALUE;
    Node minDegreeNode = null;
    for (Iterator i = graph.nodeIterator(); i.hasNext(); ) {
      Node node = (Node) i.next();
      if (minDegreeNode == null || node.getDegree() < minDegree) {
        minDegree = node.getDegree();
        minDegreeNode = node;
      }
    }
    return minDegreeNode;
  }

  /**
   * Computes a version of the sequence which is optimally
   * oriented relative to the underlying geometry.
   * <p>
   * Heuristics used are:
   * <ul>
   * <li>If the path has a degree-1 node which is the start
   * node of an linestring, use that node as the start of the sequence
   * <li>If the path has a degree-1 node which is the end
   * node of an linestring, use that node as the end of the sequence
   * <li>If the sequence has no degree-1 nodes, use any node as the start
   * (NOTE: in this case could orient the sequence according to the majority of the
   * linestring orientations)
   * </ul>
   *
   * @param seq a List of DirectedEdges
   * @return a List of DirectedEdges oriented appropriately
   */
  private List orient(List seq)
  {
    DirectedEdge startEdge = (DirectedEdge) seq.get(0);
    DirectedEdge endEdge = (DirectedEdge) seq.get(seq.size() - 1);
    Node startNode = startEdge.getFromNode();
    Node endNode = endEdge.getToNode();

    boolean flipSeq = false;
    boolean hasDegree1Node = startNode.getDegree() == 1
                           || endNode.getDegree() == 1;

    if (hasDegree1Node) {
      boolean hasObviousStartNode = false;

      // test end edge before start edge, to make result stable
      // (ie. if both are good starts, pick the actual start
      if (endEdge.getToNode().getDegree() == 1 && endEdge.getEdgeDirection() == false) {
        hasObviousStartNode = true;
        flipSeq = true;
      }
      if (startEdge.getFromNode().getDegree() == 1 && startEdge.getEdgeDirection() == true) {
        hasObviousStartNode = true;
        flipSeq = false;
      }

      // since there is no obvious start node, use any node of degree 1
      if (! hasObviousStartNode) {
        // check if the start node should actually be the end node
        if (startEdge.getFromNode().getDegree() == 1)
          flipSeq = true;
        // if the end node is of degree 1, it is properly the end node
      }

    }


    // if there is no degree 1 node, just use the sequence as is
    // (Could insert heuristic of taking direction of majority of lines as overall direction)

    if (flipSeq)
      return reverse(seq);
    return seq;
  }

  /**
   * Reverse the sequence.
   * This requires reversing the order of the dirEdges, and flipping
   * each dirEdge as well
   *
   * @param seq a List of DirectedEdges, in sequential order
   * @return the reversed sequence
   */
  private List reverse(List seq)
  {
    LinkedList newSeq = new LinkedList();
    for (Iterator i = seq.iterator(); i.hasNext(); ) {
      DirectedEdge de = (DirectedEdge) i.next();
      newSeq.addFirst(de.getSym());
    }
    return newSeq;
  }

  /**
   * Builds a geometry ({@link LineString} or {@link MultiLineString} )
   * representing the sequence.
   *
   * @param sequences a List of Lists of DirectedEdges with
   *   LineMergeEdges as their parent edges.
   * @return the sequenced geometry, or <code>null</code> if no sequence exists
   */
  private Geometry buildSequencedGeometry(List sequences)
  {
    List lines = new ArrayList();

    for (Iterator i1 = sequences.iterator(); i1.hasNext(); ) {
      List seq = (List) i1.next();
      for (Iterator i2 = seq.iterator(); i2.hasNext(); ) {
        DirectedEdge de = (DirectedEdge) i2.next();
        LineMergeEdge e = (LineMergeEdge) de.getEdge();
        LineString line = e.getLine();

        LineString lineToAdd = line;
        if (! de.getEdgeDirection() && ! line.isClosed())
          lineToAdd = reverse(line);

        lines.add(lineToAdd);
      }
    }
    if (lines.size() == 0)
      return factory.createMultiLineString(new LineString[0]);
    return factory.buildGeometry(lines);
  }

  private static LineString reverse(LineString line)
  {
    Coordinate[] pts = line.getCoordinates();
    Coordinate[] revPts = new Coordinate[pts.length];
    int len = pts.length;
    for (int i = 0; i < len; i++) {
      revPts[len - 1 - i] = new Coordinate(pts[i]);
    }
    return line.getFactory().createLineString(revPts);
  }

}
TOP

Related Classes of com.vividsolutions.jts.operation.linemerge.LineSequencer

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.