Package com.vividsolutions.jts.algorithm

Source Code of com.vividsolutions.jts.algorithm.ConvexHull$RadialComparator


/*
* The JTS Topology Suite is a collection of Java classes that
* implement the fundamental operations required to validate a given
* geo-spatial data set to a known topological specification.
*
* Copyright (C) 2001 Vivid Solutions
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*
* For more information, contact:
*
*     Vivid Solutions
*     Suite #1A
*     2328 Government Street
*     Victoria BC  V8T 5G5
*     Canada
*
*     (250)385-6040
*     www.vividsolutions.com
*/
package com.vividsolutions.jts.algorithm;
import com.vividsolutions.jts.geom.*;
import com.vividsolutions.jts.util.Assert;

import java.util.*;
import com.vividsolutions.jts.util.UniqueCoordinateArrayFilter;

/**
* Computes the convex hull of a {@link Geometry}.
* The convex hull is the smallest convex Geometry that contains all the
* points in the input Geometry.
* <p>
* Uses the Graham Scan algorithm.
*
*@version 1.7
*/
public class ConvexHull
{
  private GeometryFactory geomFactory;
  private Coordinate[] inputPts;

  /**
   * Create a new convex hull construction for the input {@link Geometry}.
   */
  public ConvexHull(Geometry geometry)
  {
    this(extractCoordinates(geometry), geometry.getFactory());
  }
  /**
   * Create a new convex hull construction for the input {@link Coordinate} array.
   */
  public ConvexHull(Coordinate[] pts, GeometryFactory geomFactory)
  {
    inputPts = pts;
    this.geomFactory = geomFactory;
  }

  private static Coordinate[] extractCoordinates(Geometry geom)
  {
    UniqueCoordinateArrayFilter filter = new UniqueCoordinateArrayFilter();
    geom.apply(filter);
    return filter.getCoordinates();
  }

  /**
   * Returns a {@link Geometry} that represents the convex hull of the input
   * geometry.
   * The returned geometry contains the minimal number of points needed to
   * represent the convex hull.  In particular, no more than two consecutive
   * points will be collinear.
   *
   * @return if the convex hull contains 3 or more points, a {@link Polygon};
   * 2 points, a {@link LineString};
   * 1 point, a {@link Point};
   * 0 points, an empty {@link GeometryCollection}.
   */
  public Geometry getConvexHull() {

    if (inputPts.length == 0) {
      return geomFactory.createGeometryCollection(null);
    }
    if (inputPts.length == 1) {
      return geomFactory.createPoint(inputPts[0]);
    }
    if (inputPts.length == 2) {
      return geomFactory.createLineString(inputPts);
    }

    Coordinate[] reducedPts = inputPts;
    // use heuristic to reduce points, if large
    if (inputPts.length > 50) {
      reducedPts = reduce(inputPts);
    }
    // sort points for Graham scan.
    Coordinate[] sortedPts = preSort(reducedPts);

    // Use Graham scan to find convex hull.
    Stack cHS = grahamScan(sortedPts);

    // Convert stack to an array.
    Coordinate[] cH = toCoordinateArray(cHS);

    // Convert array to appropriate output geometry.
    return lineOrPolygon(cH);
  }

  /**
   * An alternative to Stack.toArray, which is not present in earlier versions
   * of Java.
   */
  protected Coordinate[] toCoordinateArray(Stack stack) {
    Coordinate[] coordinates = new Coordinate[stack.size()];
    for (int i = 0; i < stack.size(); i++) {
      Coordinate coordinate = (Coordinate) stack.get(i);
      coordinates[i] = coordinate;
    }
    return coordinates;
  }

  /**
   * Uses a heuristic to reduce the number of points scanned
   * to compute the hull.
   * The heuristic is to find a polygon guaranteed to
   * be in (or on) the hull, and eliminate all points inside it.
   * A quadrilateral defined by the extremal points
   * in the four orthogonal directions
   * can be used, but even more inclusive is
   * to use an octilateral defined by the points in the 8 cardinal directions.
   * <p>
   * Note that even if the method used to determine the polygon vertices
   * is not 100% robust, this does not affect the robustness of the convex hull.
   * <p>
   * To satisfy the requirements of the Graham Scan algorithm,
   * the returned array has at least 3 entries.
   *
   * @param pts the points to reduce
   * @return the reduced list of points (at least 3)
   */
  private Coordinate[] reduce(Coordinate[] inputPts)
  {
    //Coordinate[] polyPts = computeQuad(inputPts);
    Coordinate[] polyPts = computeOctRing(inputPts);
    //Coordinate[] polyPts = null;

    // unable to compute interior polygon for some reason
    if (polyPts == null)
      return inputPts;

//    LinearRing ring = geomFactory.createLinearRing(polyPts);
//    System.out.println(ring);

    // add points defining polygon
    TreeSet reducedSet = new TreeSet();
    for (int i = 0; i < polyPts.length; i++) {
      reducedSet.add(polyPts[i]);
    }
    /**
     * Add all unique points not in the interior poly.
     * CGAlgorithms.isPointInRing is not defined for points actually on the ring,
     * but this doesn't matter since the points of the interior polygon
     * are forced to be in the reduced set.
     */
    for (int i = 0; i < inputPts.length; i++) {
      if (! CGAlgorithms.isPointInRing(inputPts[i], polyPts)) {
        reducedSet.add(inputPts[i]);
      }
    }
    Coordinate[] reducedPts = CoordinateArrays.toCoordinateArray(reducedSet);
   
    // ensure that computed array has at least 3 points (not necessarily unique) 
    if (reducedPts.length < 3)
      return padArray3(reducedPts);
    return reducedPts;
  }

  private Coordinate[] padArray3(Coordinate[] pts)
  {
    Coordinate[] pad = new Coordinate[3];
    for (int i = 0; i < pad.length; i++) {
      if (i < pts.length) {
        pad[i] = pts[i];
      }
      else
        pad[i] = pts[0];
    }
    return pad;
  }
   
  private Coordinate[] preSort(Coordinate[] pts) {
    Coordinate t;

    // find the lowest point in the set. If two or more points have
    // the same minimum y coordinate choose the one with the minimu x.
    // This focal point is put in array location pts[0].
    for (int i = 1; i < pts.length; i++) {
      if ((pts[i].y < pts[0].y) || ((pts[i].y == pts[0].y) && (pts[i].x < pts[0].x))) {
        t = pts[0];
        pts[0] = pts[i];
        pts[i] = t;
      }
    }

    // sort the points radially around the focal point.
    Arrays.sort(pts, 1, pts.length, new RadialComparator(pts[0]));

    //radialSort(pts);
    return pts;
  }

  /**
   * Uses the Graham Scan algorithm to compute the convex hull vertices.
   *
   * @param c a list of points, with at least 3 entries
   * @return a Stack containing the ordered points of the convex hull ring
   */
  private Stack grahamScan(Coordinate[] c) {
    Coordinate p;
    Stack ps = new Stack();
    p = (Coordinate) ps.push(c[0]);
    p = (Coordinate) ps.push(c[1]);
    p = (Coordinate) ps.push(c[2]);
    for (int i = 3; i < c.length; i++) {
      p = (Coordinate) ps.pop();
      while (CGAlgorithms.computeOrientation((Coordinate) ps.peek(), p, c[i]) > 0) {
        p = (Coordinate) ps.pop();
      }
      p = (Coordinate) ps.push(p);
      p = (Coordinate) ps.push(c[i]);
    }
    p = (Coordinate) ps.push(c[0]);
    return ps;
  }

  /**
   *@return    whether the three coordinates are collinear and c2 lies between
   *      c1 and c3 inclusive
   */
  private boolean isBetween(Coordinate c1, Coordinate c2, Coordinate c3) {
    if (CGAlgorithms.computeOrientation(c1, c2, c3) != 0) {
      return false;
    }
    if (c1.x != c3.x) {
      if (c1.x <= c2.x && c2.x <= c3.x) {
        return true;
      }
      if (c3.x <= c2.x && c2.x <= c1.x) {
        return true;
      }
    }
    if (c1.y != c3.y) {
      if (c1.y <= c2.y && c2.y <= c3.y) {
        return true;
      }
      if (c3.y <= c2.y && c2.y <= c1.y) {
        return true;
      }
    }
    return false;
  }

  private Coordinate[] computeOctRing(Coordinate[] inputPts) {
    Coordinate[] octPts = computeOctPts(inputPts);
    CoordinateList coordList = new CoordinateList();
    coordList.add(octPts, false);

    // points must all lie in a line
    if (coordList.size() < 3) {
      return null;
    }
    coordList.closeRing();
    return coordList.toCoordinateArray();
  }

  private Coordinate[] computeOctPts(Coordinate[] inputPts)
  {
    Coordinate[] pts = new Coordinate[8];
    for (int j = 0; j < pts.length; j++) {
      pts[j] = inputPts[0];
    }
    for (int i = 1; i < inputPts.length; i++) {
      if (inputPts[i].x < pts[0].x) {
        pts[0] = inputPts[i];
      }
      if (inputPts[i].x - inputPts[i].y < pts[1].x - pts[1].y) {
        pts[1] = inputPts[i];
      }
      if (inputPts[i].y > pts[2].y) {
        pts[2] = inputPts[i];
      }
      if (inputPts[i].x + inputPts[i].y > pts[3].x + pts[3].y) {
        pts[3] = inputPts[i];
      }
      if (inputPts[i].x > pts[4].x) {
        pts[4] = inputPts[i];
      }
      if (inputPts[i].x - inputPts[i].y > pts[5].x - pts[5].y) {
        pts[5] = inputPts[i];
      }
      if (inputPts[i].y < pts[6].y) {
        pts[6] = inputPts[i];
      }
      if (inputPts[i].x + inputPts[i].y < pts[7].x + pts[7].y) {
        pts[7] = inputPts[i];
      }
    }
    return pts;

  }

/*
  // MD - no longer used, but keep for reference purposes
  private Coordinate[] computeQuad(Coordinate[] inputPts) {
    BigQuad bigQuad = bigQuad(inputPts);

    // Build a linear ring defining a big poly.
    ArrayList bigPoly = new ArrayList();
    bigPoly.add(bigQuad.westmost);
    if (! bigPoly.contains(bigQuad.northmost)) {
      bigPoly.add(bigQuad.northmost);
    }
    if (! bigPoly.contains(bigQuad.eastmost)) {
      bigPoly.add(bigQuad.eastmost);
    }
    if (! bigPoly.contains(bigQuad.southmost)) {
      bigPoly.add(bigQuad.southmost);
    }
    // points must all lie in a line
    if (bigPoly.size() < 3) {
      return null;
    }
    // closing point
    bigPoly.add(bigQuad.westmost);

    Coordinate[] bigPolyArray = CoordinateArrays.toCoordinateArray(bigPoly);

    return bigPolyArray;
  }

  private BigQuad bigQuad(Coordinate[] pts) {
    BigQuad bigQuad = new BigQuad();
    bigQuad.northmost = pts[0];
    bigQuad.southmost = pts[0];
    bigQuad.westmost = pts[0];
    bigQuad.eastmost = pts[0];
    for (int i = 1; i < pts.length; i++) {
      if (pts[i].x < bigQuad.westmost.x) {
        bigQuad.westmost = pts[i];
      }
      if (pts[i].x > bigQuad.eastmost.x) {
        bigQuad.eastmost = pts[i];
      }
      if (pts[i].y < bigQuad.southmost.y) {
        bigQuad.southmost = pts[i];
      }
      if (pts[i].y > bigQuad.northmost.y) {
        bigQuad.northmost = pts[i];
      }
    }
    return bigQuad;
  }

  private static class BigQuad {
    public Coordinate northmost;
    public Coordinate southmost;
    public Coordinate westmost;
    public Coordinate eastmost;
  }
  */

  /**
   *@param  vertices  the vertices of a linear ring, which may or may not be
   *      flattened (i.e. vertices collinear)
   *@return           a 2-vertex <code>LineString</code> if the vertices are
   *      collinear; otherwise, a <code>Polygon</code> with unnecessary
   *      (collinear) vertices removed
   */
  private Geometry lineOrPolygon(Coordinate[] coordinates) {

    coordinates = cleanRing(coordinates);
    if (coordinates.length == 3) {
      return geomFactory.createLineString(new Coordinate[]{coordinates[0], coordinates[1]});
//      return new LineString(new Coordinate[]{coordinates[0], coordinates[1]},
//          geometry.getPrecisionModel(), geometry.getSRID());
    }
    LinearRing linearRing = geomFactory.createLinearRing(coordinates);
    return geomFactory.createPolygon(linearRing, null);
  }

  /**
   *@param  vertices  the vertices of a linear ring, which may or may not be
   *      flattened (i.e. vertices collinear)
   *@return           the coordinates with unnecessary (collinear) vertices
   *      removed
   */
  private Coordinate[] cleanRing(Coordinate[] original) {
    Assert.equals(original[0], original[original.length - 1]);
    ArrayList cleanedRing = new ArrayList();
    Coordinate previousDistinctCoordinate = null;
    for (int i = 0; i <= original.length - 2; i++) {
      Coordinate currentCoordinate = original[i];
      Coordinate nextCoordinate = original[i+1];
      if (currentCoordinate.equals(nextCoordinate)) {
        continue;
      }
      if (previousDistinctCoordinate != null
          && isBetween(previousDistinctCoordinate, currentCoordinate, nextCoordinate)) {
        continue;
      }
      cleanedRing.add(currentCoordinate);
      previousDistinctCoordinate = currentCoordinate;
    }
    cleanedRing.add(original[original.length - 1]);
    Coordinate[] cleanedRingCoordinates = new Coordinate[cleanedRing.size()];
    return (Coordinate[]) cleanedRing.toArray(cleanedRingCoordinates);
  }


  /**
   * Compares {@link Coordinate}s for their angle and distance
   * relative to an origin.
   *
   * @author Martin Davis
   * @version 1.7
   */
  private static class RadialComparator
      implements Comparator
  {
    private Coordinate origin;

    public RadialComparator(Coordinate origin)
    {
      this.origin = origin;
    }
    public int compare(Object o1, Object o2)
    {
      Coordinate p1 = (Coordinate) o1;
      Coordinate p2 = (Coordinate) o2;
      return polarCompare(origin, p1, p2);
    }

    /**
     * Given two points p and q compare them with respect to their radial
     * ordering about point o.  First checks radial ordering.
     * If points are collinear, the comparison is based
     * on their distance to the origin.
     * <p>
     * p < q iff
     * <ul>
     * <li>ang(o-p) < ang(o-q) (e.g. o-p-q is CCW)
     * <li>or ang(o-p) == ang(o-q) && dist(o,p) < dist(o,q)
     * </ul>
     *
     * @param o the origin
     * @param p a point
     * @param q another point
     * @return -1, 0 or 1 depending on whether p is less than,
     * equal to or greater than q
     */
    private static int polarCompare(Coordinate o, Coordinate p, Coordinate q)
    {
      double dxp = p.x - o.x;
      double dyp = p.y - o.y;
      double dxq = q.x - o.x;
      double dyq = q.y - o.y;

/*
      // MD - non-robust
      int result = 0;
      double alph = Math.atan2(dxp, dyp);
      double beta = Math.atan2(dxq, dyq);
      if (alph < beta) {
        result = -1;
      }
      if (alph > beta) {
        result = 1;
      }
      if (result !=  0) return result;
      //*/

      int orient = CGAlgorithms.computeOrientation(o, p, q);

      if (orient == CGAlgorithms.COUNTERCLOCKWISE) return 1;
      if (orient == CGAlgorithms.CLOCKWISE) return -1;

      // points are collinear - check distance
      double op = dxp * dxp + dyp * dyp;
      double oq = dxq * dxq + dyq * dyq;
      if (op < oq) {
        return -1;
      }
      if (op > oq) {
        return 1;
      }
      return 0;
    }

  }
}
TOP

Related Classes of com.vividsolutions.jts.algorithm.ConvexHull$RadialComparator

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.