package org.pdf4j.saxon.expr;
import org.pdf4j.saxon.trace.ExpressionPresenter;
import org.pdf4j.saxon.trans.XPathException;
import org.pdf4j.saxon.type.ItemType;
import org.pdf4j.saxon.value.Cardinality;
import org.pdf4j.saxon.value.Value;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
/**
* Binary Expression: a numeric or boolean expression consisting of the
* two operands and an operator
*/
public abstract class BinaryExpression extends Expression {
protected Expression operand0;
protected Expression operand1;
protected int operator; // represented by the token number from class Tokenizer
/**
* Create a binary expression identifying the two operands and the operator
* @param p0 the left-hand operand
* @param op the operator, as a token returned by the Tokenizer (e.g. Token.AND)
* @param p1 the right-hand operand
*/
public BinaryExpression(Expression p0, int op, Expression p1) {
operator = op;
operand0 = p0;
operand1 = p1;
adoptChildExpression(p0);
adoptChildExpression(p1);
}
/**
* Simplify an expression
* @return the simplified expression
* @param visitor an expression visitor
*/
public Expression simplify(ExpressionVisitor visitor) throws XPathException {
operand0 = visitor.simplify(operand0);
operand1 = visitor.simplify(operand1);
return this;
}
/**
* Type-check the expression. Default implementation for binary operators that accept
* any kind of operand
*/
public Expression typeCheck(ExpressionVisitor visitor, ItemType contextItemType) throws XPathException {
operand0 = visitor.typeCheck(operand0, contextItemType);
operand1 = visitor.typeCheck(operand1, contextItemType);
// if both operands are known, pre-evaluate the expression
try {
if ((operand0 instanceof Literal) && (operand1 instanceof Literal)) {
Value v = Value.asValue(evaluateItem(visitor.getStaticContext().makeEarlyEvaluationContext()));
return Literal.makeLiteral(v);
}
} catch (XPathException err) {
// if early evaluation fails, suppress the error: the value might
// not be needed at run-time
}
return this;
}
/**
* Perform optimisation of an expression and its subexpressions.
* <p/>
* <p>This method is called after all references to functions and variables have been resolved
* to the declaration of the function or variable, and after all type checking has been done.</p>
*
* @param visitor an expression visitor
* @param contextItemType the static type of "." at the point where this expression is invoked.
* The parameter is set to null if it is known statically that the context item will be undefined.
* If the type of the context item is not known statically, the argument is set to
* {@link org.pdf4j.saxon.type.Type#ITEM_TYPE}
* @return the original expression, rewritten if appropriate to optimize execution
* @throws XPathException if an error is discovered during this phase
* (typically a type error)
*/
public Expression optimize(ExpressionVisitor visitor, ItemType contextItemType) throws XPathException {
operand0 = visitor.optimize(operand0, contextItemType);
operand1 = visitor.optimize(operand1, contextItemType);
// if both operands are known, pre-evaluate the expression
try {
if ((operand0 instanceof Literal) && (operand1 instanceof Literal)) {
Value v = Value.asValue(evaluateItem(visitor.getStaticContext().makeEarlyEvaluationContext()));
return Literal.makeLiteral(v);
}
} catch (XPathException err) {
// if early evaluation fails, suppress the error: the value might
// not be needed at run-time
}
return this;
}
/**
* Mark an expression as being "flattened". This is a collective term that includes extracting the
* string value or typed value, or operations such as simple value construction that concatenate text
* nodes before atomizing. The implication of all of these is that although the expression might
* return nodes, the identity of the nodes has no significance. This is called during type checking
* of the parent expression.
*
* @param flattened set to true if the result of the expression is atomized or otherwise turned into
* an atomic value
*/
public void setFlattened(boolean flattened) {
operand0.setFlattened(flattened);
operand1.setFlattened(flattened);
}
/**
* Promote this expression if possible
*/
public Expression promote(PromotionOffer offer) throws XPathException {
Expression exp = offer.accept(this);
if (exp != null) {
return exp;
} else {
if (offer.action != PromotionOffer.UNORDERED) {
operand0 = doPromotion(operand0, offer);
operand1 = doPromotion(operand1, offer);
}
return this;
}
}
/**
* Get the immediate subexpressions of this expression
*/
public Iterator iterateSubExpressions() {
return new PairIterator(operand0, operand1);
}
/**
* Replace one subexpression by a replacement subexpression
* @param original the original subexpression
* @param replacement the replacement subexpression
* @return true if the original subexpression is found
*/
public boolean replaceSubExpression(Expression original, Expression replacement) {
boolean found = false;
if (operand0 == original) {
operand0 = replacement;
found = true;
}
if (operand1 == original) {
operand1 = replacement;
found = true;
}
return found;
}
/**
* Get the operator
* @return the operator, for example {@link Token#PLUS}
*/
public int getOperator() {
return operator;
}
/**
* Get the operands
* @return the two operands of the binary expression, as an array of length 2
*/
public Expression[] getOperands() {
return new Expression[] {operand0, operand1};
}
/**
* Determine the static cardinality. Default implementation returns [0..1] if either operand
* can be empty, or [1..1] otherwise.
*/
public int computeCardinality() {
if (Cardinality.allowsZero(operand0.getCardinality()) ||
Cardinality.allowsZero(operand1.getCardinality())) {
return StaticProperty.ALLOWS_ZERO_OR_ONE;
} else {
return StaticProperty.EXACTLY_ONE;
}
}
/**
* Determine the special properties of this expression
* @return {@link StaticProperty#NON_CREATIVE}. This is overridden
* for some subclasses.
*/
public int computeSpecialProperties() {
int p = super.computeSpecialProperties();
return p | StaticProperty.NON_CREATIVE;
}
/**
* Determine whether a binary operator is commutative, that is, A op B = B op A.
* @param operator the operator, for example {@link Token#PLUS}
* @return true if the operator is commutative
*/
protected static boolean isCommutative(int operator) {
return (operator == Token.AND ||
operator == Token.OR ||
operator == Token.UNION ||
operator == Token.INTERSECT ||
operator == Token.PLUS ||
operator == Token.MULT ||
operator == Token.EQUALS ||
operator == Token.FEQ ||
operator == Token.NE ||
operator == Token.FNE
);
}
/**
* Determine whether an operator is associative, that is, ((a^b)^c) = (a^(b^c))
* @param operator the operator, for example {@link Token#PLUS}
* @return true if the operator is associative
*/
protected static boolean isAssociative(int operator) {
return (operator == Token.AND ||
operator == Token.OR ||
operator == Token.UNION ||
operator == Token.INTERSECT ||
operator == Token.PLUS ||
operator == Token.MULT
);
}
/**
* Test if one operator is the inverse of another, so that (A op1 B) is
* equivalent to (B op2 A). Commutative operators are the inverse of themselves
* and are therefore not listed here.
* @param op1 the first operator
* @param op2 the second operator
* @return true if the operators are the inverse of each other
*/
protected static boolean isInverse(int op1, int op2) {
return op1 != op2 && op1 == Token.inverse(op2);
}
/**
* Is this expression the same as another expression?
*/
public boolean equals(Object other) {
if (other instanceof BinaryExpression) {
BinaryExpression b = (BinaryExpression)other;
if (operator == b.operator) {
if (operand0.equals(b.operand0) &&
operand1.equals(b.operand1)) {
return true;
}
if (isCommutative(operator) &&
operand0.equals(b.operand1) &&
operand1.equals(b.operand0)) {
return true;
}
if (isAssociative(operator) &&
pairwiseEqual(flattenExpression(new ArrayList(4)),
b.flattenExpression(new ArrayList(4)))) {
return true;
}
}
if (isInverse(operator, b.operator) &&
operand0.equals(b.operand1) &&
operand1.equals(b.operand0)) {
return true;
}
}
return false;
}
/**
* Flatten an expression with respect to an associative operator: for example
* the expression (a+b) + (c+d) becomes list(a,b,c,d), with the list in canonical
* order (sorted by hashCode)
* @param list a list provided by the caller to contain the result
* @return the list of expressions
*/
private List flattenExpression(List list) {
if (operand0 instanceof BinaryExpression &&
((BinaryExpression)operand0).operator == operator) {
((BinaryExpression)operand0).flattenExpression(list);
} else {
int h = operand0.hashCode();
list.add(operand0);
int i = list.size()-1;
while (i > 0 && h > list.get(i-1).hashCode()) {
list.set(i, list.get(i-1));
list.set(i-1, operand0);
i--;
}
}
if (operand1 instanceof BinaryExpression &&
((BinaryExpression)operand1).operator == operator) {
((BinaryExpression)operand1).flattenExpression(list);
} else {
int h = operand1.hashCode();
list.add(operand1);
int i = list.size()-1;
while (i > 0 && h > list.get(i-1).hashCode()) {
list.set(i, list.get(i-1));
list.set(i-1, operand1);
i--;
}
}
return list;
}
/**
* Compare whether two lists of expressions are pairwise equal
* @param a the first list of expressions
* @param b the second list of expressions
* @return true if the two lists are equal
*/
private boolean pairwiseEqual(List a, List b) {
if (a.size() != b.size()) {
return false;
}
for (int i=0; i<a.size(); i++) {
if (!a.get(i).equals(b.get(i))) {
return false;
}
}
return true;
}
/**
* Get a hashCode for comparing two expressions. Note that this hashcode gives the same
* result for (A op B) and for (B op A), whether or not the operator is commutative.
*/
public int hashCode() {
// Ensure that an operator and its inverse get the same hash code,
// so that (A lt B) has the same hash code as (B gt A)
int op = Math.min(operator, Token.inverse(operator));
return ("BinaryExpression " + op).hashCode()
^ operand0.hashCode()
^ operand1.hashCode();
}
/**
* The toString() method for an expression attempts to give a representation of the expression
* in an XPath-like form, but there is no guarantee that the syntax will actually be true XPath.
* In the case of XSLT instructions, the toString() method gives an abstracted view of the syntax
*/
public String toString() {
return "(" + operand0.toString() + " " + displayOperator() + " " + operand1.toString() + ")";
}
/**
* Diagnostic print of expression structure. The abstract expression tree
* is written to the supplied output destination.
*/
public void explain(ExpressionPresenter out) {
out.startElement("operator");
out.emitAttribute("op", displayOperator());
operand0.explain(out);
operand1.explain(out);
out.endElement();
}
protected String displayOperator() {
return Token.tokens[operator];
}
}
//
// The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis,
// WITHOUT WARRANTY OF ANY KIND, either express or implied.
// See the License for the specific language governing rights and limitations under the License.
//
// The Original Code is: all this file.
//
// The Initial Developer of the Original Code is Michael H. Kay.
//
// Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved.
//
// Contributor(s): none.
//