/*
* Kodkod -- Copyright (c) 2005-2008, Emina Torlak
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package kodkod.engine.ucore;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Set;
import kodkod.ast.Formula;
import kodkod.ast.Node;
import kodkod.ast.Variable;
import kodkod.engine.fol2sat.RecordFilter;
import kodkod.engine.fol2sat.TranslationLog;
import kodkod.engine.fol2sat.TranslationRecord;
import kodkod.engine.fol2sat.Translator;
import kodkod.engine.satlab.Clause;
import kodkod.engine.satlab.ResolutionTrace;
import kodkod.instance.TupleSet;
import kodkod.util.ints.IntBitSet;
import kodkod.util.ints.IntIterator;
import kodkod.util.ints.IntSet;
import kodkod.util.ints.IntTreeSet;
import kodkod.util.ints.Ints;
import kodkod.util.ints.SparseSequence;
import kodkod.util.ints.TreeSequence;
/**
* A collection of utility methods for implementing
* logic-level reduction strategies.
*
* @author Emina Torlak
*/
public final class StrategyUtils {
private StrategyUtils() {}
/**
* Returns the variables that correspond to the roots of log.formula.
* @return
* <pre>
* { v: int | some r: log.records |
* r.node in log.roots() and
* r.env.isEmpty() and
* abs(r.literal) != Integer.MAX_VALUE and
* v = abs(r.literal) and
* no r': log.records | r'.node = r.node && log.replay.r' > log.replay.r }
* </pre>
*/
public static IntSet rootVars(TranslationLog log) {
final IntSet rootVars = new IntTreeSet();
final Set<Formula> roots = log.roots();
final Map<Formula,int[]> maxRootVar = new LinkedHashMap<Formula,int[]>(roots.size());
final RecordFilter filter = new RecordFilter() {
public boolean accept(Node node, Formula translated, int literal, Map<Variable, TupleSet> env) {
return roots.contains(translated) && env.isEmpty();
}
};
for(Iterator<TranslationRecord> itr = log.replay(filter); itr.hasNext();) {
TranslationRecord record = itr.next();
int[] var = maxRootVar.get(record.translated());
if (var==null) {
var = new int[1];
maxRootVar.put(record.translated(), var);
}
var[0] = StrictMath.abs(record.literal());
}
for(int[] var : maxRootVar.values()) {
int topVar = var[0];
if (topVar != Integer.MAX_VALUE) // formula simplified to TRUE
rootVars.add(var[0]);
}
// for(Map.Entry<Formula,int[]> entry : maxRootVar.entrySet()) {
// final int topVar = entry.getValue()[0];
// if (topVar != Integer.MAX_VALUE) // formula simplified to TRUE
// rootVars.add(topVar);
// System.out.println(topVar + " ==>" + entry.getKey());
// }
return rootVars;
}
/**
* Returns a map from variables to the corresponding roots of log.formula.
* @return
* <pre>
* { v: int, f: Formula | some r: log.records |
* r.translated in log.roots() and
* r.translated = f and
* r.env.isEmpty() and
* abs(r.literal) != Integer.MAX_VALUE and
* v = abs(r.literal) and
* no r': log.records | r'.node = r.node && log.replay.r' > log.replay.r }
* </pre>
*/
static SparseSequence<Formula> roots(TranslationLog log) {
final SparseSequence<Formula> rootVars = new TreeSequence<Formula>();
final Set<Formula> roots = log.roots();
final Map<Formula,int[]> maxRootVar = new IdentityHashMap<Formula,int[]>(roots.size());
final RecordFilter filter = new RecordFilter() {
public boolean accept(Node node, Formula translated, int literal, Map<Variable, TupleSet> env) {
return roots.contains(translated) && env.isEmpty();
}
};
for(Iterator<TranslationRecord> itr = log.replay(filter); itr.hasNext();) {
TranslationRecord record = itr.next();
int[] var = maxRootVar.get(record.translated());
if (var==null) {
var = new int[1];
maxRootVar.put(record.translated(), var);
}
var[0] = StrictMath.abs(record.literal());
}
for(Map.Entry<Formula,int[]> entry : maxRootVar.entrySet()) {
final int topVar = entry.getValue()[0];
if (topVar != Integer.MAX_VALUE) // formula simplified to TRUE
rootVars.put(topVar, entry.getKey());
}
return rootVars;
}
/**
* Returns the variables that correspond to the roots of log.formula, in the order
* in which they were specified in log.formula.
* @return variables that correspond to the roots of log.formula, in the order
* in which they were specified in log.formula.
*/
// static IntVector orderedRootVars(TranslationLog log) {
// final Set<Formula> roots = log.roots();
// final Map<Formula,int[]> maxRootVar = new LinkedHashMap<Formula,int[]>(roots.size());
// final RecordFilter filter = new RecordFilter() {
// public boolean accept(Node node, int literal, Map<Variable, TupleSet> env) {
// return roots.contains(node) && env.isEmpty();
// }
// };
// for(Iterator<TranslationRecord> itr = log.replay(filter); itr.hasNext();) {
// TranslationRecord record = itr.next();
// int[] var = maxRootVar.get(record.node());
// if (var==null) {
// var = new int[1];
// maxRootVar.put((Formula)record.node(), var);
// }
// var[0] = StrictMath.abs(record.literal());
// }
// final IntSet uniqueRoots = new IntTreeSet();
// final IntVector orderedRoots = new ArrayIntVector(roots.size());
// for(int[] var : maxRootVar.values()) {
// int topVar = var[0];
// if (topVar != Integer.MAX_VALUE) // formula simplified to TRUE
// if (uniqueRoots.add(var[0])) {
// orderedRoots.add(var[0]);
// };
// }
// return orderedRoots;
// }
/**
* Returns relevant core variables; that is, all variables that occur both in the positive and
* negative phase in trace.core.
* @return { v: [1..) | (some p, n: trace.core | v in trace.elts[p].literals and -v in trace.elts[n].literals) }
*/
public static IntSet coreVars(ResolutionTrace trace) {
final IntSet posVars = new IntTreeSet(), negVars = new IntTreeSet();
for(Iterator<Clause> iter = trace.iterator(trace.core()); iter.hasNext();) {
Clause clause = iter.next();
for(IntIterator lits = clause.literals(); lits.hasNext(); ) {
int lit = lits.next();
if (lit > 0) posVars.add(lit);
else negVars.add(-lit);
}
}
posVars.retainAll(negVars);
assert !posVars.isEmpty();
final IntSet ret = new IntBitSet(posVars.max()+1);
ret.addAll(posVars);
return ret;
}
/**
* Returns the set of all variables in the core of the given trace
* that form unit clauses.
* @return { v: [1..) | some c: trace.core | c.size() = 1 and c.maxVariable() = v }
*/
public static IntSet coreUnits(ResolutionTrace trace) {
final IntSet units = new IntTreeSet();
for(Iterator<Clause> itr = trace.reverseIterator(trace.core()); itr.hasNext(); ) {
Clause c = itr.next();
if (c.size()==1) {
units.add(c.maxVariable());
}
}
if (units.isEmpty()) return Ints.EMPTY_SET;
return Ints.asSet(units.toArray());
}
/**
* Returns the consecutive variables at the tail of the core of the given trace
* that form unit clauses.
* @return the consecutive variables at the tail of the core of the given trace
* that form unit clauses
*/
static IntSet coreTailUnits(ResolutionTrace trace) {
final IntSet units = new IntTreeSet();
for(Iterator<Clause> itr = trace.reverseIterator(trace.core()); itr.hasNext(); ) {
Clause c = itr.next();
if (c.size()==1) {
units.add(c.maxVariable());
} else {
break;
}
}
return units;
}
/**
* Returns the indices of all axioms
* in the given trace that form the translations of the formulas
* identified by the given variables. This method assumes that
* the axioms in the given trace were generated by the Kodkod
* {@linkplain Translator}.
* @return
* let C = { c: trace.prover.clauses | c.maxVariable() in relevantVars },
* T = { c1, c2: C | c2.maxVariable() in abs(c1.literals) } |
* C.*T
*/
static IntSet clausesFor(ResolutionTrace trace, IntSet relevantVars) {
// System.out.println("relevant: " + relevantVars);
final IntSet axioms = trace.axioms();
final IntSet reachableVars = new IntBitSet(relevantVars.max()+1);
reachableVars.addAll(relevantVars);
final IntSet relevantAxioms = new IntBitSet(axioms.size());
final Iterator<Clause> itr = trace.reverseIterator(axioms);
for(int i = axioms.max(); i >= 0; i--) {
Clause clause = itr.next();
int maxVar = clause.maxVariable();
if (reachableVars.contains(maxVar)) {
for(IntIterator lits = clause.literals(); lits.hasNext(); ) {
reachableVars.add(StrictMath.abs(lits.next()));
}
relevantAxioms.add(i);
}
}
return relevantAxioms;
}
}