Package kodkod.engine.ucore

Source Code of kodkod.engine.ucore.DynamicRCEStrategy

/*
* Kodkod -- Copyright (c) 2005-2008, Emina Torlak
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package kodkod.engine.ucore;

import java.util.Arrays;
import java.util.Iterator;

import kodkod.engine.fol2sat.TranslationLog;
import kodkod.engine.fol2sat.Translator;
import kodkod.engine.satlab.Clause;
import kodkod.engine.satlab.ReductionStrategy;
import kodkod.engine.satlab.ResolutionTrace;
import kodkod.util.ints.IntBitSet;
import kodkod.util.ints.IntIterator;
import kodkod.util.ints.IntSet;
import kodkod.util.ints.Ints;
import kodkod.util.ints.SparseSequence;
import kodkod.util.ints.TreeSequence;

/**
* Dynamic Recycling Core Extraction is a strategy for generating unsat cores that are minimal at the logic level. 
* Specifically, let C be a core that is minimal according to this strategy,
* and let F(C) be the top-level logic constraints
* corresponding to C.  Then, this strategy guarantees that there is no clause
* c in C such that F(C - c) is a strict subset of F(C). Furthermore, it also
* guarantees that for all f in F(C), F(C) - f is satisfiable.  This is a stronger
* guarantee than that of {@linkplain HybridStrategy}.  In general, using this strategy
* is more expensive, timewise, than using {@linkplain HybridStrategy}.
*
* <p>Like Adaptive RCE, DRCE is parameterized with 3 values that control the amount of recycling.  The
* first is the <tt>noRecycleRatio</tt>, which completely disables recycling if it is greater than
* the ratio of the size of the core passed to {@linkplain #next(ResolutionTrace)} and the number of axioms in the
* trace.  The default value is .03; if the core makes up only 3 percent of the axioms, no recycling
* will happen.  The remaining two parameters are the <tt>recycleLimit</tt> and the <tt>hardnessCutOff</tt>.
* If the hardness of the proof passed to {@linkplain #next(ResolutionTrace)} is greater than <tt>hardnessCutOff</tt>,
* then the number of relevant axioms, |A_r|, plus the number of recycled resolvents is no greater than
* |A_r|*<tt>recycleLimit</tt>.  Otherwise, all valid
* resolvents are recycled (i.e. added to the relevant axioms). 
* Proof hardness is the ratio of the trace size to the number of axioms in the trace.
* Default value for <tt>hardnessCutOff</tt> is 2.0, and  default value for <tt>recycleLimit</tt> is 1.2.
*
* <p>Unlike ARCE, DRCE uses proof information to determine the order in which the constraints are tested for
* membership in a minimal core.  ARCE, RCE, SCE and NCE all use the same (arbitrary but deterministic) ordering.</p>
*
* <p>This implementation of DRCE will work properly only on CNFs generated by the kodkod {@linkplain Translator}. </p>
*
* @specfield noRecycleRatio: double
* @specfield hardnessCutOff: double
* @specfield recycleLimit: double
* @invariant noRecycleRatio in [0..1]
* @invariant recycleLimit >= 1
* @invariant hardnessCutOff >= 1
* @author Emina Torlak
* @see HybridStrategy
*/
public final class DynamicRCEStrategy implements ReductionStrategy {
  private final double noRecycleRatio, recycleLimit, hardnessCutOff;
  private static final boolean DBG = true;
  private final SparseSequence<IntSet> hits;
  /**
   * Constructs an ARCE strategy that will use the given translation
   * log to relate the cnf clauses back to the logic constraints from
   * which they were generated.
   * @effects this.hardnessCutOff' = 2 and this.recycleLimit' = 1.2 and this.noRecycleRatio' = .03
   */
  public DynamicRCEStrategy(final TranslationLog log) {
    this(log, .03, 2.0, 1.2);
  }
 
  /**
   * Constructs an ARCE strategy that will use the given translation
   * log to relate the cnf clauses back to the logic constraints from
   * which they were generated.
   * @effects this.hardnessCutOff' = hardnessCutOff and this.recycleLimit' = recycleLimit and
   * this.noRecycleRatio' = noRecycleRatio
   */
  public DynamicRCEStrategy(final TranslationLog log, double noRecycleRatio, double hardnessCutOff, double recycleLimit) {
    if (noRecycleRatio<0 || noRecycleRatio>1)
      throw new IllegalArgumentException("noRecycleRatio must be in [0..1]: " + noRecycleRatio);
    if (hardnessCutOff < 1)
      throw new IllegalArgumentException("hardnessCutOff must be >=1: " + hardnessCutOff);
    if (recycleLimit < 1)
      throw new IllegalArgumentException("recycleLimit must be >=1: " + recycleLimit);
    this.noRecycleRatio = noRecycleRatio;
    this.hardnessCutOff = hardnessCutOff;
    this.recycleLimit = recycleLimit;
    this.hits = new TreeSequence<IntSet>();
    for(IntIterator itr = StrategyUtils.rootVars(log).iterator(); itr.hasNext(); ) {
      hits.put(itr.next(), null);
    }
  }

  /**
   * {@inheritDoc}
   * @see kodkod.engine.satlab.ReductionStrategy#next(kodkod.engine.satlab.ResolutionTrace)
   */
  public IntSet next(ResolutionTrace trace) {
    if (hits.isEmpty()) return Ints.EMPTY_SET; // tried everything
    final IntSet relevantVars = StrategyUtils.coreTailUnits(trace);
   
    final long[] byRelevance = sortByRelevance(trace, relevantVars);
    if (DBG) printRelevant(byRelevance);
     for(int i = byRelevance.length-1; i>=0; i--) {
      final int var = (int)byRelevance[i];
      if (hits.remove(var)!=null) {
        // remove maxVar from the set of relevant variables
        relevantVars.remove(var);
        if (relevantVars.isEmpty()) break; // there was only one root formula left
        // get all axioms and resolvents corresponding to the clauses that
        // form the translations of formulas identified by relevant vars
        final IntSet relevantClauses = clausesFor(trace, relevantVars);
        assert !relevantClauses.isEmpty() && !relevantClauses.contains(trace.size()-1);
       
        if (DBG) System.out.println("relevant clauses: " + relevantClauses.size() + ", removed " + var);
       
        return relevantClauses;
      }
    }
   
    hits.clear();   
    return Ints.EMPTY_SET;
  }
 
  private final void printRelevant(long[] byRelevance) {
    System.out.print("\nsorted by relevance: ");
    for(long r : byRelevance) {
      System.out.print((int)(r>>>32) + ":" + (int)r + " ");
    }
    System.out.println();
  }
 
  /**
   * Returns an array R of longs such that for each i, j in [0..R.length) i < j implies
   * that the formula identified by (int)R[i] in this.hits contributes fewer clauses to
   * the core of the given trace than the formula identified by (int)R[j].
   * @return an array as described above
   */
  private long[] sortByRelevance(ResolutionTrace trace, IntSet relevantVars) {
    hits.indices().retainAll(relevantVars);
   
    if (hits.get(hits.indices().min())==null) { // first call, initialize the hits
      for(IntIterator varItr = relevantVars.iterator(); varItr.hasNext(); ) {
        final int var = varItr.next();
        final IntSet varReachable = new IntBitSet(var+1);
        varReachable.add(var);
        hits.put(var, varReachable);
      }
      for(Iterator<Clause> clauseItr = trace.reverseIterator(trace.axioms()); clauseItr.hasNext();) {
        final Clause clause = clauseItr.next();
        final int maxVar = clause.maxVariable();
        for(IntSet reachableVars : hits.values()) {
          if (reachableVars.contains(maxVar)) {
            for(IntIterator lits = clause.literals(); lits.hasNext(); ) {
              reachableVars.add(StrictMath.abs(lits.next()));
            }
          }
        }
      }
    }
   
    final long[] counts = new long[hits.size()];
   
    for(Iterator<Clause> clauseItr = trace.iterator(trace.core()); clauseItr.hasNext(); ) {
      final Clause clause = clauseItr.next();
      final int maxVar = clause.maxVariable();
      int i = 0;
      for(IntSet reachableVars : hits.values()) {
        if (reachableVars.contains(maxVar)) {
          counts[i]++;
        }
        i++;
      }
    }

   
    int  i = 0
    for(IntIterator varItr = hits.indices().iterator(); varItr.hasNext();) {
      final int var = varItr.next();
      counts[i] = (counts[i]<<32) | var;
      i++;
    }
   
    Arrays.sort(counts);
 
    return counts;
  }

  /**
   * Returns the indices of all axioms and resolvents
   * in the given trace that form the translations of the formulas
   * identified by the given variables.  This method assumes that
   * the axioms in the given trace were generated by the Kodkod
   * {@linkplain Translator}.
   * @return
   * let C = { c: trace.prover.clauses | c.maxVariable() in relevantVars },
   *     T = { c1, c2: C | c2.maxVariable() in abs(c1.literals) },
   *     A = C.*T |
   *     trace.backwardReachable(A) - trace.backwardReachable(trace.axioms() - A)
   */
  private IntSet clausesFor(ResolutionTrace trace, IntSet relevantVars) {
    final double hardness = (double) trace.size() / (double) trace.axioms().size();
    final double coreRatio = ((double) trace.core().size() / (double) trace.axioms().size());
   
    if (DBG) System.out.println("trace size: " + trace.size() + ", axioms: " + trace.axioms().size() + ", core: " + trace.core().size() + ", resolvents: " + trace.resolvents().size());
    if (DBG) System.out.println("hardness: " + hardness + ", coreRatio: " + coreRatio);
   
    final IntSet relevantAxioms = StrategyUtils.clausesFor(trace, relevantVars);
    if (DBG) System.out.println("relevant axioms:  " + relevantAxioms.size());
   
    if (coreRatio < noRecycleRatio) {
      return relevantAxioms;
    } else if (hardness < hardnessCutOff) {
      return trace.learnable(relevantAxioms);
    } else {
      IntSet current = relevantAxioms, last;
      final int maxRelevant = (int) Math.rint(relevantAxioms.size()*recycleLimit);
      do {
        last = current;
        current = trace.directlyLearnable(current);
      } while (last.size() < current.size() && current.size() < maxRelevant);
     
      if (DBG) System.out.println("last: " + last.size() +", current: " + current.size() + ", maxRelevant: " + maxRelevant);
     
      return current.size() < maxRelevant ? current : last;
    }
       
  }

}
TOP

Related Classes of kodkod.engine.ucore.DynamicRCEStrategy

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.