/*
* Kodkod -- Copyright (c) 2005-2008, Emina Torlak
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package kodkod.engine.ucore;
import kodkod.engine.fol2sat.TranslationLog;
import kodkod.engine.fol2sat.Translator;
import kodkod.engine.satlab.ReductionStrategy;
import kodkod.engine.satlab.ResolutionTrace;
import kodkod.util.ints.IntCollection;
import kodkod.util.ints.IntIterator;
import kodkod.util.ints.IntSet;
import kodkod.util.ints.Ints;
/**
* Adaptive Recycling Core Extraction is a strategy for generating unsat cores that are minimal at the logic level.
* Specifically, let C be a core that is minimal according to this strategy,
* and let F(C) be the top-level logic constraints
* corresponding to C. Then, this strategy guarantees that there is no clause
* c in C such that F(C - c) is a strict subset of F(C). Furthermore, it also
* guarantees that for all f in F(C), F(C) - f is satisfiable. This is a stronger
* guarantee than that of {@linkplain HybridStrategy}. In general, using this strategy
* is more expensive, timewise, than using {@linkplain HybridStrategy}.
*
* <p>Unlike RCE, ARCE is parameterized with 3 values that control the amount of recycling. The
* first is the <tt>noRecycleRatio</tt>, which completely disables recycling if it is greater than
* the ratio of the size of the core passed to {@linkplain #next(ResolutionTrace)} and the number of axioms in the
* trace. The default value is .03; if the core makes up only 3 percent of the axioms, no recycling
* will happen. The remaining two parameters are the <tt>recycleLimit</tt> and the <tt>hardnessCutOff</tt>.
* If the hardness of the proof passed to {@linkplain #next(ResolutionTrace)} is greater than <tt>hardnessCutOff</tt>,
* then the number of relevant axioms, |A_r|, plus the number of recycled resolvents is no greater than
* |A_r|*<tt>recycleLimit</tt>. Otherwise, all valid
* resolvents are recycled (i.e. added to the relevant axioms).
* Proof hardness is the ratio of the trace size to the number of axioms in the trace.
* Default value for <tt>hardnessCutOff</tt> is 2.0, and default value for <tt>recycleLimit</tt> is 1.2.
*
* <p>This implementation of ARCE will work properly only on CNFs generated by the kodkod {@linkplain Translator}. </p>
*
* @specfield noRecycleRatio: double
* @specfield hardnessCutOff: double
* @specfield recycleLimit: double
* @invariant noRecycleRatio in [0..1]
* @invariant recycleLimit >= 1
* @invariant hardnessCutOff >= 1
* @author Emina Torlak
* @see HybridStrategy
*/
public final class AdaptiveRCEStrategy implements ReductionStrategy {
private final IntCollection varsToTry;
private final double noRecycleRatio, recycleLimit, hardnessCutOff;
private static final boolean DBG = true;
/**
* Constructs an ARCE strategy that will use the given translation
* log to relate the cnf clauses back to the logic constraints from
* which they were generated.
* @effects this.hardnessCutOff' = 2 and this.recycleLimit' = 1.2 and this.noRecycleRatio' = .03
*/
public AdaptiveRCEStrategy(final TranslationLog log) {
this(log, .03, 2.0, 1.2);
}
/**
* Constructs an ARCE strategy that will use the given translation
* log to relate the cnf clauses back to the logic constraints from
* which they were generated.
* @effects this.hardnessCutOff' = hardnessCutOff and this.recycleLimit' = recycleLimit and
* this.noRecycleRatio' = noRecycleRatio
*/
public AdaptiveRCEStrategy(final TranslationLog log, double noRecycleRatio, double hardnessCutOff, double recycleLimit) {
varsToTry = StrategyUtils.rootVars(log);
if (noRecycleRatio<0 || noRecycleRatio>1)
throw new IllegalArgumentException("noRecycleRatio must be in [0..1]: " + noRecycleRatio);
if (hardnessCutOff < 1)
throw new IllegalArgumentException("hardnessCutOff must be >=1: " + hardnessCutOff);
if (recycleLimit < 1)
throw new IllegalArgumentException("recycleLimit must be >=1: " + recycleLimit);
this.noRecycleRatio = noRecycleRatio;
this.hardnessCutOff = hardnessCutOff;
this.recycleLimit = recycleLimit;
}
/**
* {@inheritDoc}
* @see kodkod.engine.satlab.ReductionStrategy#next(kodkod.engine.satlab.ResolutionTrace)
*/
public IntSet next(ResolutionTrace trace) {
if (varsToTry.isEmpty()) return Ints.EMPTY_SET; // tried everything
final IntSet relevantVars = StrategyUtils.coreTailUnits(trace);
for(IntIterator varItr = varsToTry.iterator( ); varItr.hasNext();) {
final int var = varItr.next();
varItr.remove();
if (relevantVars.remove(var)) { // remove maxVar from the set of relevant variables
if (relevantVars.isEmpty()) break; // there was only one root formula left
// get all axioms and resolvents corresponding to the clauses that
// form the translations of formulas identified by relevant vars
final IntSet relevantClauses = clausesFor(trace, relevantVars);
assert !relevantClauses.isEmpty() && !relevantClauses.contains(trace.size()-1);
if (DBG) System.out.println("relevant clauses: " + relevantClauses.size() + ", removed " + var);
return relevantClauses;
}
}
varsToTry.clear();
return Ints.EMPTY_SET;
}
/**
* Returns the indices of all axioms and resolvents
* in the given trace that form the translations of the formulas
* identified by the given variables. This method assumes that
* the axioms in the given trace were generated by the Kodkod
* {@linkplain Translator}.
* @return
* let C = { c: trace.prover.clauses | c.maxVariable() in relevantVars },
* T = { c1, c2: C | c2.maxVariable() in abs(c1.literals) },
* A = C.*T |
* trace.backwardReachable(A) - trace.backwardReachable(trace.axioms() - A)
*/
private IntSet clausesFor(ResolutionTrace trace, IntSet relevantVars) {
final double hardness = (double) trace.size() / (double) trace.axioms().size();
final double coreRatio = ((double) trace.core().size() / (double) trace.axioms().size());
if (DBG) System.out.println("\ntrace size: " + trace.size() + ", axioms: " + trace.axioms().size() + ", core: " + trace.core().size() + ", resolvents: " + trace.resolvents().size());
if (DBG) System.out.println("hardness: " + hardness + ", coreRatio: " + coreRatio);
final IntSet relevantAxioms = StrategyUtils.clausesFor(trace, relevantVars);
if (DBG) System.out.println("relevant axioms: " + relevantAxioms.size());
if (coreRatio < noRecycleRatio) {
return relevantAxioms;
} else if (hardness < hardnessCutOff) {
return trace.learnable(relevantAxioms);
} else {
IntSet current = relevantAxioms, last;
final int maxRelevant = (int) Math.rint(relevantAxioms.size()*recycleLimit);
do {
last = current;
current = trace.directlyLearnable(current);
} while (last.size() < current.size() && current.size() < maxRelevant);
if (DBG) System.out.println("last: " + last.size() +", current: " + current.size() + ", maxRelevant: " + maxRelevant);
return current.size() < maxRelevant ? current : last;
}
}
}