/*
* Kodkod -- Copyright (c) 2005-2007, Emina Torlak
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package kodkod.engine;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import kodkod.ast.Formula;
import kodkod.ast.Relation;
import kodkod.engine.config.Options;
import kodkod.engine.fol2sat.HigherOrderDeclException;
import kodkod.engine.fol2sat.Translation;
import kodkod.engine.fol2sat.TranslationLog;
import kodkod.engine.fol2sat.Translator;
import kodkod.engine.fol2sat.TrivialFormulaException;
import kodkod.engine.fol2sat.UnboundLeafException;
import kodkod.engine.satlab.SATAbortedException;
import kodkod.engine.satlab.SATMinSolver;
import kodkod.engine.satlab.SATProver;
import kodkod.engine.satlab.SATSolver;
import kodkod.instance.Bounds;
import kodkod.instance.Instance;
import kodkod.instance.TupleSet;
import kodkod.util.ints.IntIterator;
import kodkod.util.ints.IntSet;
/**
* A computational engine for solving relational formulae.
* A {@link kodkod.ast.Formula formula} is solved with respect to given
* {@link kodkod.instance.Bounds bounds} and {@link kodkod.engine.config.Options options}.
*
* @specfield options: Options
* @author Emina Torlak
*/
public final class Solver {
private final Options options;
/**
* Constructs a new Solver with the default options.
* @effects this.options' = new Options()
*/
public Solver() {
this.options = new Options();
}
/**
* Constructs a new Solver with the given options.
* @effects this.options' = options
* @throws NullPointerException - options = null
*/
public Solver(Options options) {
if (options == null)
throw new NullPointerException();
this.options = options;
}
/**
* Returns the Options object used by this Solver
* to guide translation of formulas from first-order
* logic to cnf.
* @return this.options
*/
public Options options() {
return options;
}
/**
* Attempts to satisfy the given formula with respect to the specified bounds, while
* minimizing the specified cost function.
* If the operation is successful, the method returns a Solution that contains either a minimal-cost
* instance of the formula or a proof of unsatisfiability. The latter is generated iff
* the SAT solver generated by this.options.solver() is a {@link SATProver SATProver} in addition
* to being a {@link kodkod.engine.satlab.SATMinSolver SATMinSolver}.
*
* @requires this.options.logTranslation==0 && this.options.solver.minimizer
* @return Solution to the formula with respect to the given bounds and cost
* @throws NullPointerException - formula = null || bounds = null || cost = null
* @throws kodkod.engine.fol2sat.UnboundLeafException - the formula contains an undeclared variable or
* a relation not mapped by the given bounds
* @throws kodkod.engine.fol2sat.HigherOrderDeclException - the formula contains a higher order declaration that cannot
* be skolemized, or it can be skolemized but this.options.skolemize is false.
* @throws AbortedException - this solving task was interrupted with a call to Thread.interrupt on this thread
* @throws IllegalArgumentException - some (formula.^children & Relation) - cost.relations
* @throws IllegalStateException - !this.options.solver.minimizer || this.options.logTranslation
* @see Solution
* @see Options
* @see Cost
*/
public Solution solve(Formula formula, Bounds bounds, Cost cost)
throws HigherOrderDeclException, UnboundLeafException, AbortedException {
if (options.logTranslation()>0 || !options.solver().minimizer())
throw new IllegalStateException();
final long startTransl = System.currentTimeMillis();
try {
final Translation translation = Translator.translate(formula, bounds, options);
final long endTransl = System.currentTimeMillis();
final SATMinSolver cnf = (SATMinSolver)translation.cnf();
for(Relation r : bounds.relations()) {
IntSet vars = translation.primaryVariables(r);
if (vars != null) {
int rcost = cost.edgeCost(r);
for(IntIterator iter = vars.iterator(); iter.hasNext(); ) {
cnf.setCost(iter.next(), rcost);
}
}
}
options.reporter().solvingCNF(0, cnf.numberOfVariables(), cnf.numberOfClauses());
final long startSolve = System.currentTimeMillis();
final boolean isSat = cnf.solve();
final long endSolve = System.currentTimeMillis();
final Statistics stats = new Statistics(translation, endTransl - startTransl, endSolve - startSolve);
return isSat ? sat(bounds, translation, stats) : unsat(translation, stats);
} catch (TrivialFormulaException trivial) {
final long endTransl = System.currentTimeMillis();
return trivial(bounds, trivial, endTransl - startTransl);
} catch (SATAbortedException sae) {
throw new AbortedException(sae);
}
}
/**
* Attempts to satisfy the given formula with respect to the specified bounds or
* prove the formula's unsatisfiability.
* If the operation is successful, the method returns a Solution that contains either
* an instance of the formula or an unsatisfiability proof. Note that an unsatisfiability
* proof will be constructed iff this.options specifies the use of a core extracting SATSolver.
* Additionally, the CNF variables in the proof can be related back to the nodes in the given formula
* iff this.options has translation logging enabled. Translation logging also requires that
* there are no subnodes in the given formula that are both syntactically shared and contain free variables.
*
* @return Solution to the formula with respect to the given bounds
* @throws NullPointerException - formula = null || bounds = null
* @throws kodkod.engine.fol2sat.UnboundLeafException - the formula contains an undeclared variable or
* a relation not mapped by the given bounds
* @throws kodkod.engine.fol2sat.HigherOrderDeclException - the formula contains a higher order declaration that cannot
* be skolemized, or it can be skolemized but this.options.skolemize is false.
* @throws AbortedException - this solving task was interrupted with a call to Thread.interrupt on this thread
* @see Solution
* @see Options
* @see Proof
*/
public Solution solve(Formula formula, Bounds bounds)
throws HigherOrderDeclException, UnboundLeafException, AbortedException {
final long startTransl = System.currentTimeMillis();
try {
final Translation translation = Translator.translate(formula, bounds, options);
final long endTransl = System.currentTimeMillis();
final SATSolver cnf = translation.cnf();
options.reporter().solvingCNF(translation.numPrimaryVariables(), cnf.numberOfVariables(), cnf.numberOfClauses());
final long startSolve = System.currentTimeMillis();
final boolean isSat = cnf.solve();
final long endSolve = System.currentTimeMillis();
final Statistics stats = new Statistics(translation, endTransl - startTransl, endSolve - startSolve);
return isSat ? sat(bounds, translation, stats) : unsat(translation, stats);
} catch (TrivialFormulaException trivial) {
final long endTransl = System.currentTimeMillis();
return trivial(bounds, trivial, endTransl - startTransl);
} catch (SATAbortedException sae) {
throw new AbortedException(sae);
}
}
/**
* Attempts to find all solutions to the given formula with respect to the specified bounds or
* to prove the formula's unsatisfiability.
* If the operation is successful, the method returns an iterator over n Solution objects. The outcome
* of the first n-1 solutions is SAT or trivially SAT, and the outcome of the nth solution is UNSAT
* or tirivally UNSAT. Note that an unsatisfiability
* proof will be constructed for the last solution iff this.options specifies the use of a core extracting SATSolver.
* Additionally, the CNF variables in the proof can be related back to the nodes in the given formula
* iff this.options has variable tracking enabled. Translation logging also requires that
* there are no subnodes in the given formula that are both syntactically shared and contain free variables.
*
* @return an iterator over all the Solutions to the formula with respect to the given bounds
* @throws NullPointerException - formula = null || bounds = null
* @throws kodkod.engine.fol2sat.UnboundLeafException - the formula contains an undeclared variable or
* a relation not mapped by the given bounds
* @throws kodkod.engine.fol2sat.HigherOrderDeclException - the formula contains a higher order declaration that cannot
* be skolemized, or it can be skolemized but this.options.skolemize is false.
* @throws AbortedException - this solving task was interrupted with a call to Thread.interrupt on this thread
* @throws IllegalStateException - !this.options.solver().incremental()
* @see Solution
* @see Options
* @see Proof
*/
public Iterator<Solution> solveAll(final Formula formula, final Bounds bounds)
throws HigherOrderDeclException, UnboundLeafException, AbortedException {
if (!options.solver().incremental())
throw new IllegalArgumentException("cannot enumerate solutions without an incremental solver.");
return new SolutionIterator(formula, bounds, options);
}
/**
* {@inheritDoc}
* @see java.lang.Object#toString()
*/
public String toString() {
return options.toString();
}
/**
* Returns the result of solving a sat formula.
* @param bounds Bounds with which solve() was called
* @param translation the translation
* @param stats translation / solving stats
* @return the result of solving a sat formula.
*/
private static Solution sat(Bounds bounds, Translation translation, Statistics stats) {
final Solution sol = Solution.satisfiable(stats, padInstance(translation.interpret(), bounds));
translation.cnf().free();
return sol;
}
/**
* Returns the result of solving an unsat formula.
* @param translation the translation
* @param stats translation / solving stats
* @return the result of solving an unsat formula.
*/
private static Solution unsat(Translation translation, Statistics stats) {
final SATSolver cnf = translation.cnf();
final TranslationLog log = translation.log();
if (cnf instanceof SATProver && log != null) {
return Solution.unsatisfiable(stats, new ResolutionBasedProof((SATProver) cnf, log));
} else { // can free memory
final Solution sol = Solution.unsatisfiable(stats, null);
cnf.free();
return sol;
}
}
/**
* @return the number of primary variables needed to encode the unknown tuples in the given bounds.
*/
private static int trivialPrimaries(Bounds bounds) {
int prim = 0;
for(Relation r : bounds.relations()) {
prim += bounds.upperBound(r).size() - bounds.lowerBound(r).size();
}
return prim;
}
/**
* Returns the result of solving a trivially (un)sat formula.
* @param bounds Bounds with which solve() was called
* @param desc TrivialFormulaException thrown as the result of the formula simplifying to a constant
* @param translTime translation time
* @return the result of solving a trivially (un)sat formula.
*/
private static Solution trivial(Bounds bounds, TrivialFormulaException desc, long translTime) {
final Statistics stats = new Statistics(trivialPrimaries(desc.bounds()), 0, 0, translTime, 0);
if (desc.value().booleanValue()) {
return Solution.triviallySatisfiable(stats, padInstance(toInstance(desc.bounds()), bounds));
} else {
return Solution.triviallyUnsatisfiable(stats, trivialProof(desc.log()));
}
}
/**
* Returns a proof for the trivially unsatisfiable log.formula,
* provided that log is non-null. Otherwise returns null.
* @requires log != null => log.formula is trivially unsatisfiable
* @return a proof for the trivially unsatisfiable log.formula,
* provided that log is non-null. Otherwise returns null.
*/
private static Proof trivialProof(TranslationLog log) {
return log==null ? null : new TrivialProof(log);
}
/**
* "Pads" the argument instance with the mappings that occur in bounds.lowerBound
* but not in the instance.
* @requires instance.relations in bounds.relations
* @effects instance.relations' = bounds.relations' &&
* instance.tuples' = bounds.lowerBound ++ instance.tuples
* @return instance
*/
private static Instance padInstance(Instance instance, Bounds bounds) {
for (Relation r : bounds.relations()) {
if (!instance.contains(r)) {
instance.add(r, bounds.lowerBound(r));
}
}
for (IntIterator iter = bounds.ints().iterator(); iter.hasNext();) {
int i = iter.next();
instance.add(i, bounds.exactBound(i));
}
return instance;
}
/**
* Creates an instance from the given Bounds. The instance
* is simply the mapping bounds.lowerBound.
* @return the instance corresponding to bounds.lowerBound
*/
private static Instance toInstance(Bounds bounds) {
final Instance instance = new Instance(bounds.universe());
for (Relation r : bounds.relations()) {
instance.add(r, bounds.lowerBound(r));
}
for (IntIterator iter = bounds.ints().iterator(); iter.hasNext();) {
int i = iter.next();
instance.add(i, bounds.exactBound(i));
}
return instance;
}
/**
* An iterator over all solutions of a model.
* @author Emina Torlak
*/
private static final class SolutionIterator implements Iterator<Solution> {
private final Options options;
private Formula formula;
private Bounds bounds;
private Translation translation;
private long translTime;
private int trivial;
/**
* Constructs a solution iterator for the given formula, bounds, and options.
*/
SolutionIterator(Formula formula, Bounds bounds, Options options) {
this.formula = formula;
this.bounds = bounds;
this.options = options;
this.translation = null;
this.trivial = 0;
}
/**
* Returns true if there is another solution.
* @see java.util.Iterator#hasNext()
*/
public boolean hasNext() {
return formula != null;
}
/**
* Solves translation.cnf and adds the negation of the
* found model to the set of clauses.
* @requires this.translation != null
* @effects this.translation.cnf is modified to eliminate
* the current solution from the set of possible solutions
* @return current solution
*/
private Solution nonTrivialSolution() {
try {
final SATSolver cnf = translation.cnf();
options.reporter().solvingCNF(translation.numPrimaryVariables(), cnf.numberOfVariables(), cnf.numberOfClauses());
final long startSolve = System.currentTimeMillis();
final boolean isSat = cnf.solve();
final long endSolve = System.currentTimeMillis();
final Statistics stats = new Statistics(translation, translTime, endSolve - startSolve);
if (isSat) {
// extract the current solution; can't use the sat(..) method because it frees the sat solver
final Solution sol = Solution.satisfiable(stats, padInstance(translation.interpret(), bounds));
// add the negation of the current model to the solver
final int primary = translation.numPrimaryVariables();
final int[] notModel = new int[primary];
for(int i = 1; i <= primary; i++) {
notModel[i-1] = cnf.valueOf(i) ? -i : i;
}
cnf.addClause(notModel);
return sol;
} else {
formula = null; bounds = null; // unsat, no more solutions, free up some space
return unsat(translation, stats);
}
} catch (SATAbortedException sae) {
throw new AbortedException(sae);
}
}
/**
* Packages the information from the given trivial formula exception
* into a solution and returns it. If the formula is satisfiable,
* this.formula and this.bounds are modified to eliminate the current
* trivial solution from the set of possible solutions.
* @requires this.translation = null
* @effects this.formula and this.bounds are modified to eliminate the current
* trivial solution from the set of possible solutions.
* @return current solution
*/
private Solution trivialSolution(TrivialFormulaException tfe) {
final Statistics stats = new Statistics(0, 0, 0, translTime, 0);
if (tfe.value().booleanValue()) {
trivial++;
final Bounds translBounds = tfe.bounds();
final Instance trivialInstance = padInstance(toInstance(translBounds), bounds);
final Solution sol = Solution.triviallySatisfiable(stats, trivialInstance);
final List<Formula> changes = new LinkedList<Formula>();
for(Map.Entry<Relation, TupleSet> entry: trivialInstance.relationTuples().entrySet()) {
final Relation r = entry.getKey();
if (!translBounds.relations().contains(r)) {
translBounds.bound(r, bounds.lowerBound(r), bounds.upperBound(r));
}
if (translBounds.lowerBound(r)!=translBounds.upperBound(r)) { // r may change
if (entry.getValue().isEmpty()) {
changes.add(r.some());
} else {
final Relation rmodel = Relation.nary(r.name()+"_"+trivial, r.arity());
translBounds.boundExactly(rmodel, entry.getValue());
changes.add(r.eq(rmodel).not());
}
}
}
bounds = translBounds;
// no changes => there can be no more solutions (besides the current trivial one)
formula = changes.isEmpty() ? Formula.FALSE : tfe.formula().and(Formula.or(changes));
return sol;
} else {
formula = null; bounds = null;
return Solution.triviallyUnsatisfiable(stats, trivialProof(tfe.log()));
}
}
/**
* Returns the next solution if any.
* @see java.util.Iterator#next()
*/
public Solution next() {
if (!hasNext()) throw new NoSuchElementException();
if (translation==null) {
try {
translTime = System.currentTimeMillis();
translation = Translator.translate(formula, bounds, options);
translTime = System.currentTimeMillis() - translTime;
return nonTrivialSolution();
} catch (TrivialFormulaException tfe) {
translTime = System.currentTimeMillis() - translTime;
return trivialSolution(tfe);
}
} else {
return nonTrivialSolution();
}
}
/**
* @see java.util.Iterator#remove()
*/
public void remove() {
throw new UnsupportedOperationException();
}
}
}