Package org.apache.cassandra.db

Source Code of org.apache.cassandra.db.ColumnFamilyStore

/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements.  See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership.  The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License.  You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.cassandra.db;

import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FilenameFilter;
import java.io.IOError;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.lang.management.ManagementFactory;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.concurrent.ConcurrentSkipListMap;
import java.util.concurrent.ConcurrentSkipListSet;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;
import java.util.regex.Pattern;

import javax.management.MBeanServer;
import javax.management.ObjectName;

import org.apache.cassandra.concurrent.JMXEnabledThreadPoolExecutor;
import org.apache.cassandra.concurrent.NamedThreadFactory;
import org.apache.cassandra.concurrent.RetryingScheduledThreadPoolExecutor;
import org.apache.cassandra.concurrent.StageManager;
import org.apache.cassandra.config.CFMetaData;
import org.apache.cassandra.config.ColumnDefinition;
import org.apache.cassandra.config.DatabaseDescriptor;
import org.apache.cassandra.db.columniterator.IColumnIterator;
import org.apache.cassandra.db.columniterator.IdentityQueryFilter;
import org.apache.cassandra.db.commitlog.CommitLog;
import org.apache.cassandra.db.commitlog.CommitLogSegment;
import org.apache.cassandra.db.filter.IFilter;
import org.apache.cassandra.db.filter.NamesQueryFilter;
import org.apache.cassandra.db.filter.QueryFilter;
import org.apache.cassandra.db.filter.QueryPath;
import org.apache.cassandra.db.filter.SliceQueryFilter;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.db.marshal.BytesType;
import org.apache.cassandra.db.marshal.LocalByPartionerType;
import org.apache.cassandra.dht.AbstractBounds;
import org.apache.cassandra.dht.Bounds;
import org.apache.cassandra.dht.ByteOrderedPartitioner;
import org.apache.cassandra.dht.IPartitioner;
import org.apache.cassandra.dht.LocalPartitioner;
import org.apache.cassandra.dht.LocalToken;
import org.apache.cassandra.dht.OrderPreservingPartitioner;
import org.apache.cassandra.dht.Range;
import org.apache.cassandra.dht.Token;
import org.apache.cassandra.io.sstable.Component;
import org.apache.cassandra.io.sstable.Descriptor;
import org.apache.cassandra.io.sstable.ReducingKeyIterator;
import org.apache.cassandra.io.sstable.SSTable;
import org.apache.cassandra.io.sstable.SSTableReader;
import org.apache.cassandra.io.sstable.SSTableTracker;
import org.apache.cassandra.io.util.FileUtils;
import org.apache.cassandra.service.StorageService;
import org.apache.cassandra.thrift.IndexClause;
import org.apache.cassandra.thrift.IndexExpression;
import org.apache.cassandra.thrift.IndexOperator;
import org.apache.cassandra.utils.EstimatedHistogram;
import org.apache.cassandra.utils.FBUtilities;
import org.apache.cassandra.utils.LatencyTracker;
import org.apache.cassandra.utils.Pair;
import org.apache.cassandra.utils.WrappedRunnable;
import org.apache.commons.collections.IteratorUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.google.common.collect.Iterables;

public class ColumnFamilyStore implements ColumnFamilyStoreMBean
{
    private static Logger logger = LoggerFactory.getLogger(ColumnFamilyStore.class);

    private static final ScheduledThreadPoolExecutor cacheSavingExecutor =
            new RetryingScheduledThreadPoolExecutor("CACHE-SAVER", Thread.MIN_PRIORITY);

    /*
     * submitFlush first puts [Binary]Memtable.getSortedContents on the flushSorter executor,
     * which then puts the sorted results on the writer executor.  This is because sorting is CPU-bound,
     * and writing is disk-bound; we want to be able to do both at once.  When the write is complete,
     * we turn the writer into an SSTableReader and add it to ssTables_ where it is available for reads.
     *
     * For BinaryMemtable that's about all that happens.  For live Memtables there are two other things
     * that switchMemtable does (which should be the only caller of submitFlush in this case).
     * First, it puts the Memtable into memtablesPendingFlush, where it stays until the flush is complete
     * and it's been added as an SSTableReader to ssTables_.  Second, it adds an entry to commitLogUpdater
     * that waits for the flush to complete, then calls onMemtableFlush.  This allows multiple flushes
     * to happen simultaneously on multicore systems, while still calling onMF in the correct order,
     * which is necessary for replay in case of a restart since CommitLog assumes that when onMF is
     * called, all data up to the given context has been persisted to SSTables.
     */
    private static final ExecutorService flushSorter
            = new JMXEnabledThreadPoolExecutor(1,
                                               Runtime.getRuntime().availableProcessors(),
                                               StageManager.KEEPALIVE,
                                               TimeUnit.SECONDS,
                                               new LinkedBlockingQueue<Runnable>(Runtime.getRuntime().availableProcessors()),
                                               new NamedThreadFactory("FlushSorter"),
                                               "internal");
    private static final ExecutorService flushWriter
            = new JMXEnabledThreadPoolExecutor(1,
                                               DatabaseDescriptor.getFlushWriters(),
                                               StageManager.KEEPALIVE,
                                               TimeUnit.SECONDS,
                                               new LinkedBlockingQueue<Runnable>(DatabaseDescriptor.getFlushWriters()),
                                               new NamedThreadFactory("FlushWriter"),
                                               "internal");
    public static final ExecutorService postFlushExecutor = new JMXEnabledThreadPoolExecutor("MemtablePostFlusher");
   
    private Set<Memtable> memtablesPendingFlush = new ConcurrentSkipListSet<Memtable>();

    public final Table table;
    public final String columnFamily;
    public final IPartitioner partitioner;
    private final String mbeanName;

    private volatile int memtableSwitchCount = 0;

    /* This is used to generate the next index for a SSTable */
    private AtomicInteger fileIndexGenerator = new AtomicInteger(0);

    /* active memtable associated with this ColumnFamilyStore. */
    private Memtable memtable;

    private final SortedMap<ByteBuffer, ColumnFamilyStore> indexedColumns;

    // TODO binarymemtable ops are not threadsafe (do they need to be?)
    private AtomicReference<BinaryMemtable> binaryMemtable;

    /* SSTables on disk for this column family */
    private SSTableTracker ssTables;

    private LatencyTracker readStats = new LatencyTracker();
    private LatencyTracker writeStats = new LatencyTracker();

    // counts of sstables accessed by reads
    private final EstimatedHistogram recentSSTablesPerRead = new EstimatedHistogram(35);
    private final EstimatedHistogram sstablesPerRead = new EstimatedHistogram(35);

    public final CFMetaData metadata;

    /* These are locally held copies to be changed from the config during runtime */
    private int minCompactionThreshold;
    private int maxCompactionThreshold;
    private int memtime;
    private int memsize;
    private double memops;

    private final Runnable rowCacheSaverTask = new WrappedRunnable()
    {
        protected void runMayThrow() throws IOException
        {
            ssTables.saveRowCache();
        }
    };

    private final Runnable keyCacheSaverTask = new WrappedRunnable()
    {
        protected void runMayThrow() throws Exception
        {
            ssTables.saveKeyCache();
        }
    };

    private ColumnFamilyStore(Table table, String columnFamilyName, IPartitioner partitioner, int generation, CFMetaData metadata)
    {
        assert metadata != null : "null metadata for " + table + ":" + columnFamilyName;
        this.table = table;
        columnFamily = columnFamilyName;
        this.metadata = metadata;
        this.minCompactionThreshold = metadata.minCompactionThreshold;
        this.maxCompactionThreshold = metadata.maxCompactionThreshold;
        this.memtime = metadata.memtableFlushAfterMins;
        this.memsize = metadata.memtableThroughputInMb;
        this.memops = metadata.memtableOperationsInMillions;
        this.partitioner = partitioner;
        fileIndexGenerator.set(generation);
        memtable = new Memtable(this);
        binaryMemtable = new AtomicReference<BinaryMemtable>(new BinaryMemtable(this));

        if (logger.isDebugEnabled())
            logger.debug("Starting CFS {}", columnFamily);

        // scan for sstables corresponding to this cf and load them
        ssTables = new SSTableTracker(table.name, columnFamilyName);
        Set<DecoratedKey> savedKeys = readSavedCache(DatabaseDescriptor.getSerializedKeyCachePath(table.name, columnFamilyName));
        logger.info("read " + savedKeys.size() + " from saved key cache");
        List<SSTableReader> sstables = new ArrayList<SSTableReader>();
        for (Map.Entry<Descriptor,Set<Component>> sstableFiles : files(table.name, columnFamilyName, false).entrySet())
        {
            SSTableReader sstable;
            try
            {
                sstable = SSTableReader.open(sstableFiles.getKey(), sstableFiles.getValue(), savedKeys, ssTables, metadata, this.partitioner);
            }
            catch (FileNotFoundException ex)
            {
                logger.error("Missing sstable component in " + sstableFiles + "; skipped because of " + ex.getMessage());
                continue;
            }
            catch (IOException ex)
            {
                logger.error("Corrupt sstable " + sstableFiles + "; skipped", ex);
                continue;
            }
            sstables.add(sstable);
        }
        ssTables.add(sstables);

        // create the private ColumnFamilyStores for the secondary column indexes
        indexedColumns = new ConcurrentSkipListMap<ByteBuffer, ColumnFamilyStore>(getComparator());
        for (ColumnDefinition info : metadata.column_metadata.values())
        {
            if (info.index_type != null)
                addIndex(info);
        }

        // register the mbean
        String type = this.partitioner instanceof LocalPartitioner ? "IndexColumnFamilies" : "ColumnFamilies";
        mbeanName = "org.apache.cassandra.db:type=" + type + ",keyspace=" + this.table.name + ",columnfamily=" + columnFamily;
        try
        {
            MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
            ObjectName nameObj = new ObjectName(mbeanName);
            mbs.registerMBean(this, nameObj);
        }
        catch (Exception e)
        {
            throw new RuntimeException(e);
        }
    }

    protected Set<DecoratedKey> readSavedCache(File path)
    {
        Set<DecoratedKey> keys = new TreeSet<DecoratedKey>();
        try
        {
            long start = System.currentTimeMillis();

            if (path.exists())
            {
                if (logger.isDebugEnabled())
                    logger.debug(String.format("reading saved cache from %s", path));
                ObjectInputStream in = new ObjectInputStream(new BufferedInputStream(new FileInputStream(path)));
                while (in.available() > 0)
                {
                    int size = in.readInt();
                    byte[] bytes = new byte[size];
                    in.readFully(bytes);
                    keys.add(StorageService.getPartitioner().decorateKey(ByteBuffer.wrap(bytes)));
                }
                in.close();
                if (logger.isDebugEnabled())
                    logger.debug(String.format("completed reading (%d ms; %d keys) from saved cache at %s",
                                               System.currentTimeMillis() - start, keys.size(), path));
            }
        }
        catch (IOException ioe)
        {
            logger.warn(String.format("error reading saved cache at %s", path.getAbsolutePath()), ioe);
        }
        return keys;
    }

    public void addIndex(final ColumnDefinition info)
    {
        assert info.index_type != null;
        IPartitioner rowPartitioner = StorageService.getPartitioner();
        AbstractType columnComparator = (rowPartitioner instanceof OrderPreservingPartitioner || rowPartitioner instanceof ByteOrderedPartitioner)
                                        ? BytesType.instance
                                        : new LocalByPartionerType(StorageService.getPartitioner());
        final CFMetaData indexedCfMetadata = CFMetaData.newIndexMetadata(table.name, columnFamily, info, columnComparator);
        ColumnFamilyStore indexedCfs = ColumnFamilyStore.createColumnFamilyStore(table,
                                                                                 indexedCfMetadata.cfName,
                                                                                 new LocalPartitioner(metadata.column_metadata.get(info.name).validator),
                                                                                 indexedCfMetadata);
        // record that the column is supposed to be indexed, before we start building it
        // (so we don't omit indexing writes that happen during build process)
        indexedColumns.put(info.name, indexedCfs);
        if (!SystemTable.isIndexBuilt(table.name, indexedCfMetadata.cfName))
        {
            logger.info("Creating index {}.{}", table, indexedCfMetadata.cfName);
            try
            {
                forceBlockingFlush();
            }
            catch (ExecutionException e)
            {
                throw new RuntimeException(e);
            }
            catch (InterruptedException e)
            {
                throw new AssertionError(e);
            }
            buildSecondaryIndexes(getSSTables(), FBUtilities.singleton(info.name));
            logger.info("Index {} complete", indexedCfMetadata.cfName);
            SystemTable.setIndexBuilt(table.name, indexedCfMetadata.cfName);
        }
    }

    public void buildSecondaryIndexes(Collection<SSTableReader> sstables, SortedSet<ByteBuffer> columns)
    {
        logger.debug("Submitting index build to compactionmanager");
        Table.IndexBuilder builder = table.createIndexBuilder(this, columns, new ReducingKeyIterator(sstables));
        Future future = CompactionManager.instance.submitIndexBuild(this, builder);
        try
        {
            future.get();
            for (ByteBuffer column : columns)
                getIndexedColumnFamilyStore(column).forceBlockingFlush();
        }
        catch (InterruptedException e)
        {
            throw new AssertionError(e);
        }
        catch (ExecutionException e)
        {
            throw new RuntimeException(e);
        }
    }

    // called when dropping or renaming a CF. Performs mbean housekeeping.
    void unregisterMBean()
    {
        try
        {
           
            MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
            ObjectName nameObj = new ObjectName(mbeanName);
            if (mbs.isRegistered(nameObj))
                mbs.unregisterMBean(nameObj);
            for (ColumnFamilyStore index : indexedColumns.values())
                index.unregisterMBean();
        }
        catch (Exception e)
        {
            // this shouldn't block anything.
            logger.warn(e.getMessage(), e);
        }
    }

    public long getMinRowSize()
    {
        long min = 0;
        for (SSTableReader sstable : ssTables)
        {
            if (min == 0 || sstable.getEstimatedRowSize().min() < min)
                min = sstable.getEstimatedRowSize().min();
        }
        return min;
    }

    public long getMaxRowSize()
    {
        long max = 0;
        for (SSTableReader sstable : ssTables)
        {
            if (sstable.getEstimatedRowSize().max() > max)
                max = sstable.getEstimatedRowSize().max();
        }
        return max;
    }

    public long getMeanRowSize()
    {
        long sum = 0;
        long count = 0;
        for (SSTableReader sstable : ssTables)
        {
            sum += sstable.getEstimatedRowSize().median();
            count++;
        }
        return count > 0 ? sum / count : 0;
    }

    public int getMeanColumns()
    {
        long sum = 0;
        int count = 0;
        for (SSTableReader sstable : ssTables)
        {
            sum += sstable.getEstimatedColumnCount().median();
            count++;
        }
        return count > 0 ? (int) (sum / count) : 0;
    }

    public static ColumnFamilyStore createColumnFamilyStore(Table table, String columnFamily)
    {
        return createColumnFamilyStore(table, columnFamily, StorageService.getPartitioner(), DatabaseDescriptor.getCFMetaData(table.name, columnFamily));
    }

    public static synchronized ColumnFamilyStore createColumnFamilyStore(Table table, String columnFamily, IPartitioner partitioner, CFMetaData metadata)
    {
        // get the max generation number, to prevent generation conflicts
        List<Integer> generations = new ArrayList<Integer>();
        for (Descriptor desc : files(table.name, columnFamily, true).keySet())
            generations.add(desc.generation);
        Collections.sort(generations);
        int value = (generations.size() > 0) ? (generations.get(generations.size() - 1)) : 0;

        return new ColumnFamilyStore(table, columnFamily, partitioner, value, metadata);
    }
   
    /**
     * Removes unnecessary files from the cf directory at startup: these include temp files, orphans, zero-length files
     * and compacted sstables. Files that cannot be recognized will be ignored.
     * @return A list of Descriptors that were removed.
     */
    public static void scrubDataDirectories(String table, String columnFamily)
    {
        for (Map.Entry<Descriptor,Set<Component>> sstableFiles : files(table, columnFamily, true).entrySet())
        {
            Descriptor desc = sstableFiles.getKey();
            Set<Component> components = sstableFiles.getValue();

            if (SSTable.conditionalDelete(desc, components))
                // was compacted or temporary: deleted.
                continue;

            File dataFile = new File(desc.filenameFor(Component.DATA));
            if (components.contains(Component.DATA) && dataFile.length() > 0)
                // everything appears to be in order... moving on.
                continue;

            // missing the DATA file! all components are orphaned
            logger.warn("Removing orphans for {}: {}", desc, components);
            for (Component component : components)
            {
                try
                {
                    FileUtils.deleteWithConfirm(desc.filenameFor(component));
                }
                catch (IOException e)
                {
                    throw new IOError(e);
                }
            }
        }

        // cleanup incomplete saved caches
        Pattern tmpCacheFilePattern = Pattern.compile(table + "-" + columnFamily + "-(Key|Row)Cache.*\\.tmp$");
        File dir = new File(DatabaseDescriptor.getSavedCachesLocation());

        if (dir.exists())
        {
            assert dir.isDirectory();
            for (File file : dir.listFiles())
                if (tmpCacheFilePattern.matcher(file.getName()).matches())
                    if (!file.delete())
                        logger.warn("could not delete " + file.getAbsolutePath());
        }
    }

    // must be called after all sstables are loaded since row cache merges all row versions
    public void initRowCache()
    {
        String msgSuffix = String.format(" row cache for %s of %s", columnFamily, table.name);
        int rowCacheSavePeriodInSeconds = DatabaseDescriptor.getTableMetaData(table.name).get(columnFamily).rowCacheSavePeriodInSeconds;
        int keyCacheSavePeriodInSeconds = DatabaseDescriptor.getTableMetaData(table.name).get(columnFamily).keyCacheSavePeriodInSeconds;

        long start = System.currentTimeMillis();
        logger.info(String.format("loading%s", msgSuffix));
        // sort the results on read because there are few reads and many writes and reads only happen at startup
        Set<DecoratedKey> savedKeys = readSavedCache(DatabaseDescriptor.getSerializedRowCachePath(table.name, columnFamily));
        for (DecoratedKey key : savedKeys)
            cacheRow(key);
        logger.info(String.format("completed loading (%d ms; %d keys) %s",
                                  System.currentTimeMillis()-start, ssTables.getRowCache().getSize(), msgSuffix));
        if (rowCacheSavePeriodInSeconds > 0)
        {
            cacheSavingExecutor.scheduleWithFixedDelay(rowCacheSaverTask,
                                                       rowCacheSavePeriodInSeconds,
                                                       rowCacheSavePeriodInSeconds,
                                                       TimeUnit.SECONDS);
        }

        if (keyCacheSavePeriodInSeconds > 0)
        {
            cacheSavingExecutor.scheduleWithFixedDelay(keyCacheSaverTask,
                                                       keyCacheSavePeriodInSeconds,
                                                       keyCacheSavePeriodInSeconds,
                                                       TimeUnit.SECONDS);
        }
    }

    public Future<?> submitRowCacheWrite()
    {
        return cacheSavingExecutor.submit(rowCacheSaverTask);
    }

    public Future<?> submitKeyCacheWrite()
    {
        return cacheSavingExecutor.submit(keyCacheSaverTask);
    }

    /**
     * Collects a map of sstable components.
     */
    private static Map<Descriptor,Set<Component>> files(String keyspace, final String columnFamily, final boolean includeCompacted)
    {
        final Map<Descriptor,Set<Component>> sstables = new HashMap<Descriptor,Set<Component>>();
        for (String directory : DatabaseDescriptor.getAllDataFileLocationsForTable(keyspace))
        {
            // NB: we never "accept" a file in the FilenameFilter sense: they are added to the sstable map
            new File(directory).list(new FilenameFilter()
            {
                public boolean accept(File dir, String name)
                {
                    Pair<Descriptor,Component> component = SSTable.tryComponentFromFilename(dir, name);
                    if (component != null && component.left.cfname.equals(columnFamily))
                    {
                        if (includeCompacted || !new File(component.left.filenameFor(Component.COMPACTED_MARKER)).exists())
                        {
                            Set<Component> components = sstables.get(component.left);
                            if (components == null)
                            {
                                components = new HashSet<Component>();
                                sstables.put(component.left, components);
                            }
                            components.add(component.right);
                        }
                        else
                            logger.debug("not including compacted sstable " + component.left.cfname + "-" + component.left.generation);
                    }
                    return false;
                }
            });
        }
        return sstables;
    }

    /**
     * @return the name of the column family
     */
    public String getColumnFamilyName()
    {
        return columnFamily;
    }

    /*
     * @return a temporary file name for an sstable.
     * When the sstable object is closed, it will be renamed to a non-temporary
     * format, so incomplete sstables can be recognized and removed on startup.
     */
    public String getFlushPath()
    {
        long guessedSize = 2 * memsize * 1024*1024; // 2* adds room for keys, column indexes
        String location = DatabaseDescriptor.getDataFileLocationForTable(table.name, guessedSize);
        if (location == null)
            throw new RuntimeException("Insufficient disk space to flush");
        return getTempSSTablePath(location);
    }

    public String getTempSSTablePath(String directory)
    {
        Descriptor desc = new Descriptor(new File(directory),
                                         table.name,
                                         columnFamily,
                                         fileIndexGenerator.incrementAndGet(),
                                         true);
        return desc.filenameFor(Component.DATA);
    }

    /** flush the given memtable and swap in a new one for its CFS, if it hasn't been frozen already.  threadsafe. */
    Future<?> maybeSwitchMemtable(Memtable oldMemtable, final boolean writeCommitLog)
    {
        /*
         * If we can get the writelock, that means no new updates can come in and
         * all ongoing updates to memtables have completed. We can get the tail
         * of the log and use it as the starting position for log replay on recovery.
         *
         * This is why we Table.flusherLock needs to be global instead of per-Table:
         * we need to schedule discardCompletedSegments calls in the same order as their
         * contexts (commitlog position) were read, even though the flush executor
         * is multithreaded.
         */
        Table.flusherLock.writeLock().lock();
        try
        {
            if (oldMemtable.isFrozen())
                return null;
           
            if (DatabaseDescriptor.getCFMetaData(metadata.cfId) == null)
                return null; // column family was dropped. no point in flushing.

            assert memtable == oldMemtable;
            memtable.freeze();
            final CommitLogSegment.CommitLogContext ctx = writeCommitLog ? CommitLog.instance.getContext() : null;
            logger.info("switching in a fresh Memtable for " + columnFamily + " at " + ctx);

            // submit the memtable for any indexed sub-cfses, and our own.
            List<ColumnFamilyStore> icc = new ArrayList<ColumnFamilyStore>(indexedColumns.size());
            icc.add(this);
            for (ColumnFamilyStore indexCfs : indexedColumns.values())
            {
                if (!indexCfs.memtable.isClean())
                    icc.add(indexCfs);
            }
            final CountDownLatch latch = new CountDownLatch(icc.size());
            for (ColumnFamilyStore cfs : icc)
            {
                submitFlush(cfs.memtable, latch);
                cfs.memtable = new Memtable(cfs);
            }

            // when all the memtables have been written, including for indexes, mark the flush in the commitlog header.
            // a second executor makes sure the onMemtableFlushes get called in the right order,
            // while keeping the wait-for-flush (future.get) out of anything latency-sensitive.
            return postFlushExecutor.submit(new WrappedRunnable()
            {
                public void runMayThrow() throws InterruptedException, IOException
                {
                    latch.await();
                    if (writeCommitLog)
                    {
                        // if we're not writing to the commit log, we are replaying the log, so marking
                        // the log header with "you can discard anything written before the context" is not valid
                        CommitLog.instance.discardCompletedSegments(metadata.cfId, ctx);
                    }
                }
            });
        }
        finally
        {
            Table.flusherLock.writeLock().unlock();
            if (memtableSwitchCount == Integer.MAX_VALUE)
            {
                memtableSwitchCount = 0;
            }
            memtableSwitchCount++;
        }
    }

    void switchBinaryMemtable(DecoratedKey key, ByteBuffer buffer)
    {
        binaryMemtable.set(new BinaryMemtable(this));
        binaryMemtable.get().put(key, buffer);
    }

    public void forceFlushIfExpired()
    {
        if (memtable.isExpired())
            forceFlush();
    }

    public Future<?> forceFlush()
    {
        if (memtable.isClean())
            return null;

        return maybeSwitchMemtable(memtable, true);
    }

    public void forceBlockingFlush() throws ExecutionException, InterruptedException
    {
        Future<?> future = forceFlush();
        if (future != null)
            future.get();
    }

    public void forceFlushBinary()
    {
        if (binaryMemtable.get().isClean())
            return;

        submitFlush(binaryMemtable.get(), new CountDownLatch(1));
    }

    /**
     * Insert/Update the column family for this key.
     * Caller is responsible for acquiring Table.flusherLock!
     * param @ lock - lock that needs to be used.
     * param @ key - key for update/insert
     * param @ columnFamily - columnFamily changes
     */
    Memtable apply(DecoratedKey key, ColumnFamily columnFamily)
    {
        long start = System.nanoTime();

        boolean flushRequested = memtable.isThresholdViolated();
        memtable.put(key, columnFamily);
        ColumnFamily cachedRow = getRawCachedRow(key);
        if (cachedRow != null)
            cachedRow.addAll(columnFamily);
        writeStats.addNano(System.nanoTime() - start);
       
        return flushRequested ? memtable : null;
    }

    /*
     * Insert/Update the column family for this key. param @ lock - lock that
     * needs to be used. param @ key - key for update/insert param @
     * columnFamily - columnFamily changes
     */
    void applyBinary(DecoratedKey key, ByteBuffer buffer)
    {
        long start = System.nanoTime();
        binaryMemtable.get().put(key, buffer);
        writeStats.addNano(System.nanoTime() - start);
    }

    public static ColumnFamily removeDeletedCF(ColumnFamily cf, int gcBefore)
    {
        // in case of a timestamp tie, tombstones get priority over non-tombstones.
        // (we want this to be deterministic to avoid confusion.)
        if (cf.getColumnCount() == 0 && cf.getLocalDeletionTime() <= gcBefore)
            return null;
        return cf;
    }

    /*
     This is complicated because we need to preserve deleted columns, supercolumns, and columnfamilies
     until they have been deleted for at least GC_GRACE_IN_SECONDS.  But, we do not need to preserve
     their contents; just the object itself as a "tombstone" that can be used to repair other
     replicas that do not know about the deletion.
     */
    public static ColumnFamily removeDeleted(ColumnFamily cf, int gcBefore)
    {
        if (cf == null)
        {
            return null;
        }

        removeDeletedColumnsOnly(cf, gcBefore);
        return removeDeletedCF(cf, gcBefore);
    }

    private static void removeDeletedColumnsOnly(ColumnFamily cf, int gcBefore)
    {
        if (cf.isSuper())
            removeDeletedSuper(cf, gcBefore);
        else
            removeDeletedStandard(cf, gcBefore);
    }

    private static void removeDeletedStandard(ColumnFamily cf, int gcBefore)
    {
        for (Map.Entry<ByteBuffer, IColumn> entry : cf.getColumnsMap().entrySet())
        {
            ByteBuffer cname = entry.getKey();
            IColumn c = entry.getValue();
            // remove columns if
            // (a) the column itself is tombstoned or
            // (b) the CF is tombstoned and the column is not newer than it
            // (we split the test to avoid computing ClockRelationship if not necessary)
            if ((c.isMarkedForDelete() && c.getLocalDeletionTime() <= gcBefore)
                || c.timestamp() <= cf.getMarkedForDeleteAt())
            {
                cf.remove(cname);
            }
        }
    }

    private static void removeDeletedSuper(ColumnFamily cf, int gcBefore)
    {
        // TODO assume deletion means "most are deleted?" and add to clone, instead of remove from original?
        // this could be improved by having compaction, or possibly even removeDeleted, r/m the tombstone
        // once gcBefore has passed, so if new stuff is added in it doesn't used the wrong algorithm forever
        for (Map.Entry<ByteBuffer, IColumn> entry : cf.getColumnsMap().entrySet())
        {
            SuperColumn c = (SuperColumn) entry.getValue();
            long minTimestamp = Math.max(c.getMarkedForDeleteAt(), cf.getMarkedForDeleteAt());
            for (IColumn subColumn : c.getSubColumns())
            {
                // remove subcolumns if
                // (a) the subcolumn itself is tombstoned or
                // (b) the supercolumn is tombstoned and the subcolumn is not newer than it
                if (subColumn.timestamp() <= minTimestamp
                    || (subColumn.isMarkedForDelete() && subColumn.getLocalDeletionTime() <= gcBefore))
                {
                    c.remove(subColumn.name());
                }
            }
            if (c.getSubColumns().isEmpty() && c.getLocalDeletionTime() <= gcBefore)
            {
                cf.remove(c.name());
            }
        }
    }

    /**
     * Uses bloom filters to check if key may be present in any sstable in this
     * ColumnFamilyStore, minus a set of provided ones.
     *
     * Because BFs are checked, negative returns ensure that the key is not
     * present in the checked SSTables, but positive ones doesn't ensure key
     * presence.
     */
    public boolean isKeyInRemainingSSTables(DecoratedKey key, Set<SSTable> sstablesToIgnore)
    {
        for (SSTableReader sstable : ssTables)
        {
            if (!sstablesToIgnore.contains(sstable) && sstable.getBloomFilter().isPresent(key.key))
                return true;
        }
        return false;
    }

    /*
     * Called after the Memtable flushes its in-memory data, or we add a file
     * via bootstrap. This information is
     * cached in the ColumnFamilyStore. This is useful for reads because the
     * ColumnFamilyStore first looks in the in-memory store and the into the
     * disk to find the key. If invoked during recoveryMode the
     * onMemtableFlush() need not be invoked.
     *
     * param @ filename - filename just flushed to disk
     */
    public void addSSTable(SSTableReader sstable)
    {
        ssTables.add(Arrays.asList(sstable));
        CompactionManager.instance.submitMinorIfNeeded(this);
    }

    /*
     * Add up all the files sizes this is the worst case file
     * size for compaction of all the list of files given.
     */
    long getExpectedCompactedFileSize(Iterable<SSTableReader> sstables)
    {
        long expectedFileSize = 0;
        for (SSTableReader sstable : sstables)
        {
            long size = sstable.length();
            expectedFileSize = expectedFileSize + size;
        }
        return expectedFileSize;
    }

    /*
     *  Find the maximum size file in the list .
     */
    SSTableReader getMaxSizeFile(Iterable<SSTableReader> sstables)
    {
        long maxSize = 0L;
        SSTableReader maxFile = null;
        for (SSTableReader sstable : sstables)
        {
            if (sstable.length() > maxSize)
            {
                maxSize = sstable.length();
                maxFile = sstable;
            }
        }
        return maxFile;
    }

    void forceCleanup() throws ExecutionException, InterruptedException
    {
        CompactionManager.instance.performCleanup(ColumnFamilyStore.this);
    }

    void markCompacted(Collection<SSTableReader> sstables)
    {
        ssTables.markCompacted(sstables);
    }

    boolean isCompleteSSTables(Collection<SSTableReader> sstables)
    {
        return ssTables.getSSTables().equals(new HashSet<SSTableReader>(sstables));
    }

    void replaceCompactedSSTables(Collection<SSTableReader> sstables, Iterable<SSTableReader> replacements)
    {
        ssTables.replace(sstables, replacements);
    }

    public void removeAllSSTables()
    {
        ssTables.replace(ssTables.getSSTables(), Collections.<SSTableReader>emptyList());
        for (ColumnFamilyStore indexedCfs : indexedColumns.values())
        {
            indexedCfs.removeAllSSTables();
        }
    }

    /**
     * submits flush sort on the flushSorter executor, which will in turn submit to flushWriter when sorted.
     * TODO because our executors use CallerRunsPolicy, when flushSorter fills up, no writes will proceed
     * because the next flush will start executing on the caller, mutation-stage thread that has the
     * flush write lock held.  (writes aquire this as a read lock before proceeding.)
     * This is good, because it backpressures flushes, but bad, because we can't write until that last
     * flushing thread finishes sorting, which will almost always be longer than any of the flushSorter threads proper
     * (since, by definition, it started last).
     */
    void submitFlush(IFlushable flushable, CountDownLatch latch)
    {
        logger.info("Enqueuing flush of {}", flushable);
        flushable.flushAndSignal(latch, flushSorter, flushWriter);
    }

    public int getMemtableColumnsCount()
    {
        return getMemtableThreadSafe().getCurrentOperations();
    }

    public int getMemtableDataSize()
    {
        return getMemtableThreadSafe().getCurrentThroughput();
    }

    public int getMemtableSwitchCount()
    {
        return memtableSwitchCount;
    }

    /**
     * get the current memtable in a threadsafe fashion.  note that simply "return memtable_" is
     * incorrect; you need to lock to introduce a thread safe happens-before ordering.
     *
     * do NOT use this method to do either a put or get on the memtable object, since it could be
     * flushed in the meantime (and its executor terminated).
     *
     * also do NOT make this method public or it will really get impossible to reason about these things.
     * @return
     */
    private Memtable getMemtableThreadSafe()
    {
        Table.flusherLock.readLock().lock();
        try
        {
            return memtable;
        }
        finally
        {
            Table.flusherLock.readLock().unlock();
        }
    }

    public Collection<SSTableReader> getSSTables()
    {
        return ssTables.getSSTables();
    }

    public long[] getRecentSSTablesPerReadHistogram()
    {
        return recentSSTablesPerRead.get(true);
    }

    public long[] getSSTablesPerReadHistogram()
    {
        return sstablesPerRead.get(false);
    }

    public long getReadCount()
    {
        return readStats.getOpCount();
    }

    public double getRecentReadLatencyMicros()
    {
        return readStats.getRecentLatencyMicros();
    }

    public long[] getLifetimeReadLatencyHistogramMicros()
    {
        return readStats.getTotalLatencyHistogramMicros();
    }

    public long[] getRecentReadLatencyHistogramMicros()
    {
        return readStats.getRecentLatencyHistogramMicros();
    }

    public long getTotalReadLatencyMicros()
    {
        return readStats.getTotalLatencyMicros();
    }

// TODO this actually isn't a good meature of pending tasks
    public int getPendingTasks()
    {
        return Table.flusherLock.getQueueLength();
    }

    public long getWriteCount()
    {
        return writeStats.getOpCount();
    }

    public long getTotalWriteLatencyMicros()
    {
        return writeStats.getTotalLatencyMicros();
    }

    public double getRecentWriteLatencyMicros()
    {
        return writeStats.getRecentLatencyMicros();
    }

    public long[] getLifetimeWriteLatencyHistogramMicros()
    {
        return writeStats.getTotalLatencyHistogramMicros();
    }

    public long[] getRecentWriteLatencyHistogramMicros()
    {
        return writeStats.getRecentLatencyHistogramMicros();
    }

    public ColumnFamily getColumnFamily(DecoratedKey key, QueryPath path, ByteBuffer start, ByteBuffer finish, boolean reversed, int limit)
    {
        return getColumnFamily(QueryFilter.getSliceFilter(key, path, start, finish, reversed, limit));
    }

    /**
     * get a list of columns starting from a given column, in a specified order.
     * only the latest version of a column is returned.
     * @return null if there is no data and no tombstones; otherwise a ColumnFamily
     */
    public ColumnFamily getColumnFamily(QueryFilter filter)
    {
        return getColumnFamily(filter, gcBefore());
    }

    public int gcBefore()
    {
        return (int) (System.currentTimeMillis() / 1000) - metadata.gcGraceSeconds;
    }

    private ColumnFamily cacheRow(DecoratedKey key)
    {
        ColumnFamily cached;
        if ((cached = ssTables.getRowCache().get(key)) == null)
        {
            cached = getTopLevelColumns(QueryFilter.getIdentityFilter(key, new QueryPath(columnFamily)), Integer.MIN_VALUE);
            if (cached == null)
                return null;
            ssTables.getRowCache().put(key, cached);
        }
        return cached;
    }

    private ColumnFamily getColumnFamily(QueryFilter filter, int gcBefore)
    {
        assert columnFamily.equals(filter.getColumnFamilyName()) : filter.getColumnFamilyName();

        long start = System.nanoTime();
        try
        {
            if (ssTables.getRowCache().getCapacity() == 0)
            {
                ColumnFamily cf = getTopLevelColumns(filter, gcBefore);
                        
                // TODO this is necessary because when we collate supercolumns together, we don't check
                // their subcolumns for relevance, so we need to do a second prune post facto here.
                return cf.isSuper() ? removeDeleted(cf, gcBefore) : removeDeletedCF(cf, gcBefore);
            }

            ColumnFamily cached = cacheRow(filter.key);
            if (cached == null)
                return null;
            return filterColumnFamily(cached, filter, gcBefore);
        }
        finally
        {
            readStats.addNano(System.nanoTime() - start);
        }
    }

    /** filter a cached row, which will not be modified by the filter, but may be modified by throwing out
     *  tombstones that are no longer relevant. */
    ColumnFamily filterColumnFamily(ColumnFamily cached, QueryFilter filter, int gcBefore)
    {
        // special case slicing the entire row:
        // we can skip the filter step entirely, and we can help out removeDeleted by re-caching the result
        // if any tombstones have aged out since last time.  (This means that the row cache will treat gcBefore as
        // max(gcBefore, all previous gcBefore), which is fine for correctness.)
        //
        // But, if the filter is asking for less columns than we have cached, we fall back to the slow path
        // since we have to copy out a subset.
        if (filter.filter instanceof SliceQueryFilter)
        {
            SliceQueryFilter sliceFilter = (SliceQueryFilter) filter.filter;
            if (sliceFilter.start.remaining() == 0 && sliceFilter.finish.remaining() == 0)
            {
                if (cached.isSuper() && filter.path.superColumnName != null)
                {
                    // subcolumns from named supercolumn
                    IColumn sc = cached.getColumn(filter.path.superColumnName);
                    if (sc == null || sliceFilter.count >= sc.getSubColumns().size())
                    {
                        ColumnFamily cf = cached.cloneMeShallow();
                        if (sc != null)
                            cf.addColumn(sc);
                        return removeDeleted(cf, gcBefore);
                    }
                }
                else
                {
                    // top-level columns
                    if (sliceFilter.count >= cached.getColumnCount())
                    {
                        removeDeletedColumnsOnly(cached, gcBefore);                   
                        return removeDeletedCF(cached, gcBefore);
                    }
                }
            }
        }

        IColumnIterator ci = filter.getMemtableColumnIterator(cached, null, getComparator());
        ColumnFamily cf = null;
        try
        {
            cf = ci.getColumnFamily().cloneMeShallow();
        }
        catch (IOException e)
        {
            throw new IOError(e);
        }
        filter.collectCollatedColumns(cf, ci, gcBefore);
        // TODO this is necessary because when we collate supercolumns together, we don't check
        // their subcolumns for relevance, so we need to do a second prune post facto here.
        return cf.isSuper() ? removeDeleted(cf, gcBefore) : removeDeletedCF(cf, gcBefore);
    }

    private ColumnFamily getTopLevelColumns(QueryFilter filter, int gcBefore)
    {
        // we are querying top-level columns, do a merging fetch with indexes.
        List<IColumnIterator> iterators = new ArrayList<IColumnIterator>();
        final ColumnFamily returnCF = ColumnFamily.create(metadata);
        try
        {
            IColumnIterator iter;

            /* add the current memtable */
            iter = filter.getMemtableColumnIterator(getMemtableThreadSafe(), getComparator());
            if (iter != null)
            {
                returnCF.delete(iter.getColumnFamily());
                   
                iterators.add(iter);
            }

            /* add the memtables being flushed */
            for (Memtable memtable : memtablesPendingFlush)
            {
                iter = filter.getMemtableColumnIterator(memtable, getComparator());
                if (iter != null)
                {
                    returnCF.delete(iter.getColumnFamily());
                    iterators.add(iter);
                }
            }

            /* add the SSTables on disk */
            int sstablesToIterate = 0;
            for (SSTableReader sstable : ssTables)
            {
                iter = filter.getSSTableColumnIterator(sstable);
                if (iter.getColumnFamily() != null)
                {
                    returnCF.delete(iter.getColumnFamily());
                    iterators.add(iter);
                    sstablesToIterate++;
                }
            }
            recentSSTablesPerRead.add(sstablesToIterate);
            sstablesPerRead.add(sstablesToIterate);

            Comparator<IColumn> comparator = filter.filter.getColumnComparator(getComparator());
            Iterator collated = IteratorUtils.collatedIterator(comparator, iterators);
         
                    
            filter.collectCollatedColumns(returnCF, collated, gcBefore);
         
           
            // Caller is responsible for final removeDeletedCF.  This is important for cacheRow to work correctly:
            // we need to distinguish between "there is no data at all for this row" (BF will let us rebuild that efficiently)
            // and "there used to be data, but it's gone now" (we should cache the empty CF so we don't need to rebuild that slower)
            return returnCF;
        }
        catch (IOException e)
        {
            throw new IOError(e);
        }
        finally
        {
            /* close all cursors */
            for (IColumnIterator ci : iterators)
            {
                try
                {
                    ci.close();
                }
                catch (Throwable th)
                {
                    logger.error("error closing " + ci, th);
                }
            }
        }
    }

    /**
      * Fetch a range of rows and columns from memtables/sstables.
      *
      * @param superColumn optional SuperColumn to slice subcolumns of; null to slice top-level columns
      * @param range Either a Bounds, which includes start key, or a Range, which does not.
      * @param maxResults Maximum rows to return
      * @param columnFilter description of the columns we're interested in for each row
      * @return true if we found all keys we were looking for, otherwise false
     */
    public List<Row> getRangeSlice(ByteBuffer superColumn, final AbstractBounds range, int maxResults, IFilter columnFilter)
    throws ExecutionException, InterruptedException
    {
        assert range instanceof Bounds
               || (!((Range)range).isWrapAround() || range.right.equals(StorageService.getPartitioner().getMinimumToken()))
               : range;

        List<Row> rows = new ArrayList<Row>();
        DecoratedKey startWith = new DecoratedKey(range.left, null);
        DecoratedKey stopAt = new DecoratedKey(range.right, null);

        QueryFilter filter = new QueryFilter(null, new QueryPath(columnFamily, superColumn, null), columnFilter);
        Collection<Memtable> memtables = new ArrayList<Memtable>();
        memtables.add(getMemtableThreadSafe());
        memtables.addAll(memtablesPendingFlush);

        Collection<SSTableReader> sstables = new ArrayList<SSTableReader>();
        Iterables.addAll(sstables, ssTables);

        RowIterator iterator = RowIteratorFactory.getIterator(memtables, sstables, startWith, stopAt, filter, getComparator(), this);

        try
        {
            // pull rows out of the iterator
            boolean first = true;
            while(iterator.hasNext())
            {
                Row current = iterator.next();
                DecoratedKey key = current.key;

                if (!stopAt.isEmpty() && stopAt.compareTo(key) < 0)
                    return rows;

                // skip first one
                if(range instanceof Bounds || !first || !key.equals(startWith))
                {
                    rows.add(current);
                    if (logger.isDebugEnabled())
                        logger.debug("scanned " + key);
                }
                first = false;

                if (rows.size() >= maxResults)
                    return rows;
            }
        }
        finally
        {
            try
            {
                iterator.close();
            }
            catch (IOException e)
            {
                throw new IOError(e);
            }
        }

        return rows;
    }

    public List<Row> scan(IndexClause clause, AbstractBounds range, IFilter dataFilter)
    {
        // Start with the most-restrictive indexed clause, then apply remaining clauses
        // to each row matching that clause.
        // TODO: allow merge join instead of just one index + loop
        IndexExpression primary = highestSelectivityPredicate(clause);
        ColumnFamilyStore indexCFS = getIndexedColumnFamilyStore(primary.column_name);
        assert indexCFS != null;
        DecoratedKey indexKey = indexCFS.partitioner.decorateKey(primary.value);

        // if the slicepredicate doesn't contain all the columns for which we have expressions to evaluate,
        // it needs to be expanded to include those too
        IFilter firstFilter = dataFilter;
        NamesQueryFilter extraFilter = null;
        if (clause.expressions.size() > 1)
        {
            if (dataFilter instanceof SliceQueryFilter)
            {
                // if we have a high chance of getting all the columns in a single index slice, do that.
                // otherwise, create an extraFilter to fetch by name the columns referenced by the additional expressions.
                if (getMaxRowSize() < DatabaseDescriptor.getColumnIndexSize())
                {
                    firstFilter = new SliceQueryFilter(FBUtilities.EMPTY_BYTE_BUFFER,
                                                       FBUtilities.EMPTY_BYTE_BUFFER,
                                                       ((SliceQueryFilter) dataFilter).reversed,
                                                       Integer.MAX_VALUE);
                }
                else
                {
                    SortedSet<ByteBuffer> columns = new TreeSet<ByteBuffer>(getComparator());
                    for (IndexExpression expr : clause.expressions)
                    {
                        if (expr == primary)
                            continue;
                        columns.add(expr.column_name);
                    }
                    extraFilter = new NamesQueryFilter(columns);
                }
            }
            else
            {
                // just add in columns that are not part of the resultset
                assert dataFilter instanceof NamesQueryFilter;
                SortedSet<ByteBuffer> columns = new TreeSet<ByteBuffer>(getComparator());
                for (IndexExpression expr : clause.expressions)
                {
                    if (expr == primary || ((NamesQueryFilter) dataFilter).columns.contains(expr.column_name))
                        continue;
                    columns.add(expr.column_name);
                }
                if (columns.size() > 0)
                {
                    columns.addAll(((NamesQueryFilter) dataFilter).columns);
                    firstFilter = new NamesQueryFilter(columns);
                }
            }
        }

        List<Row> rows = new ArrayList<Row>();
        ByteBuffer startKey = clause.start_key;
        QueryPath path = new QueryPath(columnFamily);

        // fetch row keys matching the primary expression, fetch the slice predicate for each
        // and filter by remaining expressions.  repeat until finished w/ assigned range or index row is exhausted.
        outer:
        while (true)
        {
            /* we don't have a way to get the key back from the DK -- we just have a token --
             * so, we need to loop after starting with start_key, until we get to keys in the given `range`.
             * But, if the calling StorageProxy is doing a good job estimating data from each range, the range
             * should be pretty close to `start_key`. */
            QueryFilter indexFilter = QueryFilter.getSliceFilter(indexKey,
                                                                 new QueryPath(indexCFS.getColumnFamilyName()),
                                                                 startKey,
                                                                 FBUtilities.EMPTY_BYTE_BUFFER,
                                                                 false,
                                                                 clause.count);
            ColumnFamily indexRow = indexCFS.getColumnFamily(indexFilter);
            if (indexRow == null)
                break;

            ByteBuffer dataKey = null;
            int n = 0;
            for (IColumn column : indexRow.getSortedColumns())
            {
                if (column.isMarkedForDelete())
                    continue;
                dataKey = column.name();
                n++;
                DecoratedKey dk = partitioner.decorateKey(dataKey);
                if (!range.right.equals(partitioner.getMinimumToken()) && range.right.compareTo(dk.token) < 0)
                    break outer;
                if (!range.contains(dk.token))
                    continue;

                // get the row columns requested, and additional columns for the expressions if necessary
                ColumnFamily data = getColumnFamily(new QueryFilter(dk, path, firstFilter));
                if (extraFilter != null)
                {
                    // we might have gotten the expression columns in with the main data slice, but
                    // we can't know for sure until that slice is done.  So, we'll do the extra query
                    // if we go through and any expression columns are not present.
                    for (IndexExpression expr : clause.expressions)
                    {
                        if (expr != primary && data.getColumn(expr.column_name) == null)
                        {
                            data.addAll(getColumnFamily(new QueryFilter(dk, path, extraFilter)));
                            break;
                        }
                    }
                }

                if (satisfies(data, clause, primary))
                {
                    // cut the resultset back to what was requested, if necessary
                    if (firstFilter != dataFilter)
                    {
                        ColumnFamily expandedData = data;
                        data = expandedData.cloneMeShallow();
                        IColumnIterator iter = dataFilter.getMemtableColumnIterator(expandedData, dk, getComparator());
                        new QueryFilter(dk, path, dataFilter).collectCollatedColumns(data, iter, gcBefore());
                    }

                    rows.add(new Row(dk, data));
                }

                if (rows.size() == clause.count)
                    break outer;
            }
            if (n < clause.count || startKey.equals(dataKey))
                break;
            startKey = dataKey;
        }

        return rows;
    }

    private IndexExpression highestSelectivityPredicate(IndexClause clause)
    {
        IndexExpression best = null;
        int bestMeanCount = Integer.MAX_VALUE;
        for (IndexExpression expression : clause.expressions)
        {
            ColumnFamilyStore cfs = getIndexedColumnFamilyStore(expression.column_name);
            if (cfs == null || !expression.op.equals(IndexOperator.EQ))
                continue;
            int columns = cfs.getMeanColumns();
            if (columns < bestMeanCount)
            {
                best = expression;
                bestMeanCount = columns;
            }
        }
        return best;
    }

    private static boolean satisfies(ColumnFamily data, IndexClause clause, IndexExpression first)
    {
        for (IndexExpression expression : clause.expressions)
        {
            // (we can skip "first" since we already know it's satisfied)
            if (expression == first)
                continue;
            // check column data vs expression
            IColumn column = data.getColumn(expression.column_name);
            if (column == null)
                continue;
            int v = data.getComparator().compare(column.value(), expression.value);
            if (!satisfies(v, expression.op))
                return false;
        }
        return true;
    }

    private static boolean satisfies(int comparison, IndexOperator op)
    {
        switch (op)
        {
            case EQ:
                return comparison == 0;
            case GTE:
                return comparison >= 0;
            case GT:
                return comparison > 0;
            case LTE:
                return comparison <= 0;
            case LT:
                return comparison < 0;
            default:
                throw new IllegalStateException();
        }
    }

    public AbstractType getComparator()
    {
        return metadata.comparator;
    }

    /**
     * Take a snap shot of this columnfamily store.
     *
     * @param snapshotName the name of the associated with the snapshot
     */
    public void snapshot(String snapshotName)
    {
        try
        {
            forceBlockingFlush();
        }
        catch (ExecutionException e)
        {
            throw new RuntimeException(e);
        }
        catch (InterruptedException e)
        {
            throw new AssertionError(e);
        }

        for (SSTableReader ssTable : ssTables)
        {
            try
            {
                // mkdir
                File dataDirectory = ssTable.descriptor.directory.getParentFile();
                String snapshotDirectoryPath = Table.getSnapshotPath(dataDirectory.getAbsolutePath(), table.name, snapshotName);
                FileUtils.createDirectory(snapshotDirectoryPath);

                // hard links
                for (Component component : ssTable.components)
                {
                    File sourceFile = new File(ssTable.descriptor.filenameFor(component));
                    File targetLink = new File(snapshotDirectoryPath, sourceFile.getName());
                    FileUtils.createHardLink(sourceFile, targetLink);
                }
                if (logger.isDebugEnabled())
                    logger.debug("Snapshot for " + table + " keyspace data file " + ssTable.getFilename() +
                        " created in " + snapshotDirectoryPath);
            }
            catch (IOException e)
            {
                throw new IOError(e);
            }

        }
    }

    public boolean hasUnreclaimedSpace()
    {
        return ssTables.getLiveSize() < ssTables.getTotalSize();
    }

    public long getTotalDiskSpaceUsed()
    {
        return ssTables.getTotalSize();
    }

    public long getLiveDiskSpaceUsed()
    {
        return ssTables.getLiveSize();
    }

    public int getLiveSSTableCount()
    {
        return ssTables.size();
    }

    /** raw cached row -- does not fetch the row if it is not present.  not counted in cache statistics.  */
    public ColumnFamily getRawCachedRow(DecoratedKey key)
    {
        return ssTables.getRowCache().getCapacity() == 0 ? null : ssTables.getRowCache().getInternal(key);
    }

    void invalidateCachedRow(DecoratedKey key)
    {
        ssTables.getRowCache().remove(key);
    }

    public void forceMajorCompaction() throws InterruptedException, ExecutionException
    {
        CompactionManager.instance.performMajor(this);
    }

    public void invalidateRowCache()
    {
        ssTables.getRowCache().clear();
    }

    public int getRowCacheCapacity()
    {
        return ssTables.getRowCache().getCapacity();
    }

    public int getKeyCacheCapacity()
    {
        return ssTables.getKeyCache().getCapacity();
    }

    public int getRowCacheSize()
    {
        return ssTables.getRowCache().getSize();
    }

    public int getKeyCacheSize()
    {
        return ssTables.getKeyCache().getSize();
    }

    public static Iterable<ColumnFamilyStore> all()
    {
        Iterable<ColumnFamilyStore>[] stores = new Iterable[DatabaseDescriptor.getTables().size()];
        int i = 0;
        for (Table table : Table.all())
        {
            stores[i++] = table.getColumnFamilyStores();
        }
        return Iterables.concat(stores);
    }

    public Iterable<DecoratedKey> allKeySamples()
    {
        Collection<SSTableReader> sstables = getSSTables();
        Iterable<DecoratedKey>[] samples = new Iterable[sstables.size()];
        int i = 0;
        for (SSTableReader sstable: sstables)
        {
            samples[i++] = sstable.getKeySamples();
        }
        return Iterables.concat(samples);
    }

    /**
     * for testing.  no effort is made to clear historical memtables.
     */
    void clearUnsafe()
    {
        memtable.clearUnsafe();
        ssTables.clearUnsafe();
    }


    public Set<Memtable> getMemtablesPendingFlush()
    {
        return memtablesPendingFlush;
    }

    /**
     * Truncate practically deletes the entire column family's data
     * @return a Future to the delete operation. Call the future's get() to make
     * sure the column family has been deleted
     */
    public Future<?> truncate() throws IOException
    {
        // snapshot will also flush, but we want to truncate the most possible, and anything in a flush written
        // after truncateAt won't be truncated.
        try
        {
            forceBlockingFlush();
        }
        catch (Exception e)
        {
            throw new RuntimeException(e);
        }

        final long truncatedAt = System.currentTimeMillis();
        snapshot(Table.getTimestampedSnapshotName("before-truncate"));

        Runnable runnable = new WrappedRunnable()
        {
            public void runMayThrow() throws InterruptedException, IOException
            {
                // putting markCompacted on the commitlogUpdater thread ensures it will run
                // after any compactions that were in progress when truncate was called, are finished
                List<SSTableReader> truncatedSSTables = new ArrayList<SSTableReader>();
                for (SSTableReader sstable : ssTables.getSSTables())
                {
                    if (!sstable.newSince(truncatedAt))
                        truncatedSSTables.add(sstable);
                }
                markCompacted(truncatedSSTables);

                // Invalidate row cache
                invalidateRowCache();
            }
        };

        return postFlushExecutor.submit(runnable);
    }

    // if this errors out, we are in a world of hurt.
    public void renameSSTables(String newCfName) throws IOException
    {
        // complete as much of the job as possible.  Don't let errors long the way prevent as much renaming as possible
        // from happening.
        IOException mostRecentProblem = null;
        for (File existing : DefsTable.getFiles(table.name, columnFamily))
        {
            try
            {
                String newFileName = existing.getName().replaceFirst("\\w+-", newCfName + "-");
                FileUtils.renameWithConfirm(existing, new File(existing.getParent(), newFileName));
            }
            catch (IOException ex)
            {
                mostRecentProblem = ex;
            }
        }
        if (mostRecentProblem != null)
            throw new IOException("One or more IOExceptions encountered while renaming files. Most recent problem is included.", mostRecentProblem);

        for (ColumnFamilyStore indexedCfs : indexedColumns.values())
        {
            indexedCfs.renameSSTables(indexedCfs.columnFamily.replace(columnFamily, newCfName));
        }
    }

    public long getBloomFilterFalsePositives()
    {
        long count = 0L;
        for (SSTableReader sstable: getSSTables())
        {
            count += sstable.getBloomFilterFalsePositiveCount();
        }
        return count;
    }

    public long getRecentBloomFilterFalsePositives()
    {
        long count = 0L;
        for (SSTableReader sstable: getSSTables())
        {
            count += sstable.getRecentBloomFilterFalsePositiveCount();
        }
        return count;
    }

    public double getBloomFilterFalseRatio()
    {
        long falseCount = 0L;
        long trueCount = 0L;
        for (SSTableReader sstable: getSSTables())
        {
            falseCount += sstable.getBloomFilterFalsePositiveCount();
            trueCount += sstable.getBloomFilterTruePositiveCount();
        }
        if (falseCount == 0L && trueCount == 0L)
            return 0d;
        return (double) falseCount / (trueCount + falseCount);
    }

    public double getRecentBloomFilterFalseRatio()
    {
        long falseCount = 0L;
        long trueCount = 0L;
        for (SSTableReader sstable: getSSTables())
        {
            falseCount += sstable.getRecentBloomFilterFalsePositiveCount();
            trueCount += sstable.getRecentBloomFilterTruePositiveCount();
        }
        if (falseCount == 0L && trueCount == 0L)
            return 0d;
        return (double) falseCount / (trueCount + falseCount);
    }

    public SortedSet<ByteBuffer> getIndexedColumns()
    {
        return (SortedSet<ByteBuffer>) indexedColumns.keySet();
    }

    public ColumnFamilyStore getIndexedColumnFamilyStore(ByteBuffer column)
    {
        return indexedColumns.get(column);
    }

    public ColumnFamily newIndexedColumnFamily(ByteBuffer column)
    {
        return ColumnFamily.create(indexedColumns.get(column).metadata);
    }

    public DecoratedKey<LocalToken> getIndexKeyFor(ByteBuffer name, ByteBuffer value)
    {
        return indexedColumns.get(name).partitioner.decorateKey(value);
    }

    @Override
    public String toString()
    {
        return "ColumnFamilyStore(" +
               "table='" + table + '\'' +
               ", columnFamily='" + columnFamily + '\'' +
               ')';
    }

    public int getMinimumCompactionThreshold()
    {
        return minCompactionThreshold;
    }
   
    public void setMinimumCompactionThreshold(int minCompactionThreshold)
    {
        if ((minCompactionThreshold > this.maxCompactionThreshold) && this.maxCompactionThreshold != 0) {
            throw new RuntimeException("The min_compaction_threshold cannot be larger than the max.");
        }
        this.minCompactionThreshold = minCompactionThreshold;
    }

    public int getMaximumCompactionThreshold()
    {
        return maxCompactionThreshold;
    }

    public void setMaximumCompactionThreshold(int maxCompactionThreshold)
    {
        if (maxCompactionThreshold < this.minCompactionThreshold) {
            throw new RuntimeException("The max_compaction_threshold cannot be smaller than the min.");
        }
        this.maxCompactionThreshold = maxCompactionThreshold;
    }

    public void disableAutoCompaction()
    {
        this.minCompactionThreshold = 0;
        this.maxCompactionThreshold = 0;
    }

    public int getMemtableFlushAfterMins()
    {
        return memtime;
    }
    public void setMemtableFlushAfterMins(int time)
    {
        if (time <= 0) {
            throw new RuntimeException("MemtableFlushAfterMins must be greater than 0.");
        }
        this.memtime = time;
    }

    public int getMemtableThroughputInMB()
    {
        return memsize;
    }
    public void setMemtableThroughputInMB(int size)
    {
        if (size <= 0) {
            throw new RuntimeException("MemtableThroughputInMB must be greater than 0.");
        }
        this.memsize = size;
    }

    public double getMemtableOperationsInMillions()
    {
        return memops;
    }
    public void setMemtableOperationsInMillions(double ops)
    {
        if (ops <= 0) {
            throw new RuntimeException("MemtableOperationsInMillions must be greater than 0.0.");
        }
        this.memops = ops;
    }
}
TOP

Related Classes of org.apache.cassandra.db.ColumnFamilyStore

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.