Package org.apache.fop.render.ps

Source Code of org.apache.fop.render.ps.PSGraphics2D$TempImage

/*
* $Id: PSGraphics2D.java,v 1.2.2.1 2001/12/03 07:40:17 keiron Exp $
* Copyright (C) 2001 The Apache Software Foundation. All rights reserved.
* For details on use and redistribution please refer to the
* LICENSE file included with these sources.
*/

package org.apache.fop.render.ps;

import org.apache.fop.pdf.*;
import org.apache.fop.layout.*;
import org.apache.fop.fonts.*;
import org.apache.fop.render.pdf.*;
import org.apache.fop.image.*;
import org.apache.fop.datatypes.ColorSpace;

import org.apache.batik.ext.awt.g2d.*;

import java.text.AttributedCharacterIterator;
import java.text.CharacterIterator;
import java.awt.*;
import java.awt.Font;
import java.awt.Image;
import java.awt.image.*;
import java.awt.font.*;
import java.awt.geom.*;
import java.awt.image.renderable.*;
import java.io.*;

import java.util.Map;
import java.util.Vector;

/**
* This concrete implementation of <tt>AbstractGraphics2D</tt> is a
* simple help to programmers to get started with their own
* implementation of <tt>Graphics2D</tt>.
* <tt>DefaultGraphics2D</tt> implements all the abstract methods
* is <tt>AbstractGraphics2D</tt> and makes it easy to start
* implementing a <tt>Graphic2D</tt> piece-meal.
*
* @author <a href="mailto:keiron@aftexsw.com">Keiron Liddle</a>
* @version $Id: PSGraphics2D.java,v 1.2.2.1 2001/12/03 07:40:17 keiron Exp $
* @see org.apache.batik.ext.awt.g2d.AbstractGraphics2D
*/
public class PSGraphics2D extends AbstractGraphics2D {
    boolean standalone = false;

    /**
     * the PDF Document being created
     */
    protected PSRenderer psRenderer;

    protected FontState fontState;

    /**
     * the current (internal) font name
     */
    protected String currentFontName;

    /**
     * the current font size in millipoints
     */
    protected int currentFontSize;

    /**
     * the current vertical position in millipoints from bottom
     */
    protected int currentYPosition = 0;

    /**
     * the current horizontal position in millipoints from left
     */
    protected int currentXPosition = 0;

    /**
     * the current colour for use in svg
     */
    PDFColor currentColour = new PDFColor(0, 0, 0);

    FontInfo fontInfo;

    /**
     * Create a new PDFGraphics2D with the given pdf document info.
     * This is used to create a Graphics object for use inside an already
     * existing document.
     */
    public PSGraphics2D(boolean textAsShapes, FontState fs, PSRenderer ren,
                        String font, int size, int xpos, int ypos) {
        super(textAsShapes);
        psRenderer = ren;
        currentFontName = font;
        currentFontSize = size;
        currentYPosition = ypos;
        currentXPosition = xpos;
        fontState = fs;
    }

    public PSGraphics2D(boolean textAsShapes) {
        super(textAsShapes);
    }

    public void setGraphicContext(GraphicContext c) {
        gc = c;
    }

    /**
     * This constructor supports the create method
     */
    public PSGraphics2D(PSGraphics2D g) {
        super(g);
    }

    /**
     * Creates a new <code>Graphics</code> object that is
     * a copy of this <code>Graphics</code> object.
     * @return     a new graphics context that is a copy of
     * this graphics context.
     */
    public Graphics create() {
        return new PSGraphics2D(this);
    }

    /**
     * Draws as much of the specified image as is currently available.
     * The image is drawn with its top-left corner at
     * (<i>x</i>,&nbsp;<i>y</i>) in this graphics context's coordinate
     * space. Transparent pixels in the image do not affect whatever
     * pixels are already there.
     * <p>
     * This method returns immediately in all cases, even if the
     * complete image has not yet been loaded, and it has not been dithered
     * and converted for the current output device.
     * <p>
     * If the image has not yet been completely loaded, then
     * <code>drawImage</code> returns <code>false</code>. As more of
     * the image becomes available, the process that draws the image notifies
     * the specified image observer.
     * @param    img the specified image to be drawn.
     * @param    x   the <i>x</i> coordinate.
     * @param    y   the <i>y</i> coordinate.
     * @param    observer    object to be notified as more of
     * the image is converted.
     * @see      java.awt.Image
     * @see      java.awt.image.ImageObserver
     * @see      java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
     */
    public boolean drawImage(Image img, int x, int y,
                             ImageObserver observer) {
        // System.err.println("drawImage:x, y");

        final int width = img.getWidth(observer);
        final int height = img.getHeight(observer);
        if (width == -1 || height == -1) {
            return false;
        }

        Dimension size = new Dimension(width, height);
        BufferedImage buf = buildBufferedImage(size);

        java.awt.Graphics2D g = buf.createGraphics();
        g.setComposite(AlphaComposite.SrcOver);
        g.setBackground(new Color(1, 1, 1, 0));
        g.setPaint(new Color(1, 1, 1, 0));
        g.fillRect(0, 0, width, height);
        g.clip(new Rectangle(0, 0, buf.getWidth(), buf.getHeight()));

        if (!g.drawImage(img, 0, 0, observer)) {
            return false;
        }
        g.dispose();

        final byte[] result = new byte[buf.getWidth() * buf.getHeight() * 3];
        final byte[] mask = new byte[buf.getWidth() * buf.getHeight()];

        Raster raster = buf.getData();
        DataBuffer bd = raster.getDataBuffer();

        int count = 0;
        int maskpos = 0;
        switch (bd.getDataType()) {
        case DataBuffer.TYPE_INT:
            int[][] idata = ((DataBufferInt)bd).getBankData();
            for (int i = 0; i < idata.length; i++) {
                for (int j = 0; j < idata[i].length; j++) {
                    // mask[maskpos++] = (byte)((idata[i][j] >> 24) & 0xFF);
                    if (((idata[i][j] >> 24) & 0xFF) != 255) {
                        result[count++] = (byte)0xFF;
                        result[count++] = (byte)0xFF;
                        result[count++] = (byte)0xFF;
                    } else {
                        result[count++] = (byte)((idata[i][j] >> 16) & 0xFF);
                        result[count++] = (byte)((idata[i][j] >> 8) & 0xFF);
                        result[count++] = (byte)((idata[i][j]) & 0xFF);
                    }
                }
            }
            break;
        default:
            // error
            break;
        }

        try {
            FopImage fopimg = new TempImage(width, height, result, mask);
            AffineTransform at = getTransform();
            double[] matrix = new double[6];
            at.getMatrix(matrix);
            psRenderer.write("gsave");
            Shape imclip = getClip();
            writeClip(imclip);
            // psRenderer.write("" + matrix[0] + " " + matrix[1] +
            // " " + matrix[2] + " " + matrix[3] + " " +
            // matrix[4] + " " + matrix[5] + " cm\n");
            psRenderer.renderBitmap(fopimg, x, y, width, height);
            psRenderer.write("grestore");
        } catch (Exception e) {
            e.printStackTrace();
        }
        return true;
    }

    public BufferedImage buildBufferedImage(Dimension size) {
        return new BufferedImage(size.width, size.height,
                                 BufferedImage.TYPE_INT_ARGB);
    }

    class TempImage implements FopImage {
        int m_height;
        int m_width;
        int m_bitsPerPixel;
        ColorSpace m_colorSpace;
        int m_bitmapSiye;
        byte[] m_bitmaps;
        byte[] m_mask;
        PDFColor transparent = new PDFColor(255, 255, 255);

        TempImage(int width, int height, byte[] result,
                  byte[] mask) throws FopImageException {
            this.m_height = height;
            this.m_width = width;
            this.m_bitsPerPixel = 8;
            this.m_colorSpace = new ColorSpace(ColorSpace.DEVICE_RGB);
            // this.m_isTransparent = false;
            // this.m_bitmapsSize = this.m_width * this.m_height * 3;
            this.m_bitmaps = result;
            this.m_mask = mask;
        }
    public boolean invertImage() {
return false;
}

        public String getURL() {
            return "" + m_bitmaps;
        }

        // image size
        public int getWidth() throws FopImageException {
            return m_width;
        }

        public int getHeight() throws FopImageException {
            return m_height;
        }

        // DeviceGray, DeviceRGB, or DeviceCMYK
        public ColorSpace getColorSpace() throws FopImageException {
            return m_colorSpace;
        }

        // bits per pixel
        public int getBitsPerPixel() throws FopImageException {
            return m_bitsPerPixel;
        }

        // For transparent images
        public boolean isTransparent() throws FopImageException {
            return transparent != null;
        }

        public PDFColor getTransparentColor() throws FopImageException {
            return transparent;
        }

        public byte[] getMask() throws FopImageException {
            return m_mask;
        }

        // get the image bytes, and bytes properties

        // get uncompressed image bytes
        public byte[] getBitmaps() throws FopImageException {
            return m_bitmaps;
        }

        // width * (bitsPerPixel / 8) * height, no ?
        public int getBitmapsSize() throws FopImageException {
            return m_width * m_height * 3;
        }

        // get compressed image bytes
        // I don't know if we really need it, nor if it
        // should be changed...
        public byte[] getRessourceBytes() throws FopImageException {
            return null;
        }

        public int getRessourceBytesSize() throws FopImageException {
            return 0;
        }

        // return null if no corresponding PDFFilter
        public PDFFilter getPDFFilter() throws FopImageException {
            return null;
        }

        // release memory
        public void close() {}

    }


    /**
     * Draws as much of the specified image as has already been scaled
     * to fit inside the specified rectangle.
     * <p>
     * The image is drawn inside the specified rectangle of this
     * graphics context's coordinate space, and is scaled if
     * necessary. Transparent pixels do not affect whatever pixels
     * are already there.
     * <p>
     * This method returns immediately in all cases, even if the
     * entire image has not yet been scaled, dithered, and converted
     * for the current output device.
     * If the current output representation is not yet complete, then
     * <code>drawImage</code> returns <code>false</code>. As more of
     * the image becomes available, the process that draws the image notifies
     * the image observer by calling its <code>imageUpdate</code> method.
     * <p>
     * A scaled version of an image will not necessarily be
     * available immediately just because an unscaled version of the
     * image has been constructed for this output device.  Each size of
     * the image may be cached separately and generated from the original
     * data in a separate image production sequence.
     * @param    img    the specified image to be drawn.
     * @param    x      the <i>x</i> coordinate.
     * @param    y      the <i>y</i> coordinate.
     * @param    width  the width of the rectangle.
     * @param    height the height of the rectangle.
     * @param    observer    object to be notified as more of
     * the image is converted.
     * @see      java.awt.Image
     * @see      java.awt.image.ImageObserver
     * @see      java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int)
     */
    public boolean drawImage(Image img, int x, int y, int width, int height,
                             ImageObserver observer) {
        System.out.println("drawImage");
        return true;
    }

    /**
     * Disposes of this graphics context and releases
     * any system resources that it is using.
     * A <code>Graphics</code> object cannot be used after
     * <code>dispose</code>has been called.
     * <p>
     * When a Java program runs, a large number of <code>Graphics</code>
     * objects can be created within a short time frame.
     * Although the finalization process of the garbage collector
     * also disposes of the same system resources, it is preferable
     * to manually free the associated resources by calling this
     * method rather than to rely on a finalization process which
     * may not run to completion for a long period of time.
     * <p>
     * Graphics objects which are provided as arguments to the
     * <code>paint</code> and <code>update</code> methods
     * of components are automatically released by the system when
     * those methods return. For efficiency, programmers should
     * call <code>dispose</code> when finished using
     * a <code>Graphics</code> object only if it was created
     * directly from a component or another <code>Graphics</code> object.
     * @see         java.awt.Graphics#finalize
     * @see         java.awt.Component#paint
     * @see         java.awt.Component#update
     * @see         java.awt.Component#getGraphics
     * @see         java.awt.Graphics#create
     */
    public void dispose() {
        // System.out.println("dispose");
        psRenderer = null;
        fontState = null;
        currentFontName = null;
        currentColour = null;
        fontInfo = null;
    }

    /**
     * Strokes the outline of a <code>Shape</code> using the settings of the
     * current <code>Graphics2D</code> context.  The rendering attributes
     * applied include the <code>Clip</code>, <code>Transform</code>,
     * <code>Paint</code>, <code>Composite</code> and
     * <code>Stroke</code> attributes.
     * @param s the <code>Shape</code> to be rendered
     * @see #setStroke
     * @see #setPaint
     * @see java.awt.Graphics#setColor
     * @see #transform
     * @see #setTransform
     * @see #clip
     * @see #setClip
     * @see #setComposite
     */
    public void draw(Shape s) {
        // System.out.println("draw(Shape)");
        psRenderer.write("gsave");
        Shape imclip = getClip();
        writeClip(imclip);
        Color c = getColor();
        psRenderer.write(c.getRed() + " " + c.getGreen() + " " + c.getBlue()
                         + " setrgbcolor");

        applyPaint(getPaint(), false);
        applyStroke(getStroke());

        psRenderer.write("newpath");
        PathIterator iter = s.getPathIterator(getTransform());
        while (!iter.isDone()) {
            double vals[] = new double[6];
            int type = iter.currentSegment(vals);
            switch (type) {
            case PathIterator.SEG_CUBICTO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[2]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[3]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[4]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[5])
                                 + " curveto");
                break;
            case PathIterator.SEG_LINETO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1])
                                 + " lineto");
                break;
            case PathIterator.SEG_MOVETO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1])
                                 + " M");
                break;
            case PathIterator.SEG_QUADTO:
                // psRenderer.write((1000 * PDFNumber.doubleOut(vals[0])) +
                // " " + (1000 * PDFNumber.doubleOut(vals[1])) + " " +
                // (1000 * PDFNumber.doubleOut(vals[2])) + " " +
                // (1000 * PDFNumber.doubleOut(vals[3])) + " y\n");
                break;
            case PathIterator.SEG_CLOSE:
                psRenderer.write("closepath");
                break;
            default:
                break;
            }
            iter.next();
        }
        doDrawing(false, true, false);
        psRenderer.write("grestore");
    }

    protected void writeClip(Shape s) {
        PathIterator iter = s.getPathIterator(getTransform());
        psRenderer.write("newpath");
        while (!iter.isDone()) {
            double vals[] = new double[6];
            int type = iter.currentSegment(vals);
            switch (type) {
            case PathIterator.SEG_CUBICTO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[2]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[3]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[4]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[5])
                                 + " curveto");
                break;
            case PathIterator.SEG_LINETO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1])
                                 + " lineto");
                break;
            case PathIterator.SEG_MOVETO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1])
                                 + " M");
                break;
            case PathIterator.SEG_QUADTO:
                // psRenderer.write(1000 * PDFNumber.doubleOut(vals[0]) +
                // " " + 1000 * PDFNumber.doubleOut(vals[1]) + " " +
                // 1000 * PDFNumber.doubleOut(vals[2]) + " " +
                // 1000 * PDFNumber.doubleOut(vals[3]) + " y\n");
                break;
            case PathIterator.SEG_CLOSE:
                psRenderer.write("closepath");
                break;
            default:
                break;
            }
            iter.next();
        }
        // clip area
        psRenderer.write("clippath");
    }

    protected void applyPaint(Paint paint, boolean fill) {
        if (paint instanceof GradientPaint) {
            GradientPaint gp = (GradientPaint)paint;
            Color c1 = gp.getColor1();
            Color c2 = gp.getColor2();
            Point2D p1 = gp.getPoint1();
            Point2D p2 = gp.getPoint2();
            boolean cyclic = gp.isCyclic();

            Vector theCoords = new Vector();
            theCoords.addElement(new Double(p1.getX()));
            theCoords.addElement(new Double(p1.getY()));
            theCoords.addElement(new Double(p2.getX()));
            theCoords.addElement(new Double(p2.getY()));

            Vector theExtend = new Vector();
            theExtend.addElement(new Boolean(true));
            theExtend.addElement(new Boolean(true));

            Vector theDomain = new Vector();
            theDomain.addElement(new Double(0));
            theDomain.addElement(new Double(1));

            Vector theEncode = new Vector();
            theEncode.addElement(new Double(0));
            theEncode.addElement(new Double(1));
            theEncode.addElement(new Double(0));
            theEncode.addElement(new Double(1));

            Vector theBounds = new Vector();
            theBounds.addElement(new Double(0));
            theBounds.addElement(new Double(1));

            Vector theFunctions = new Vector();

            Vector someColors = new Vector();

            PDFColor color1 = new PDFColor(c1.getRed(), c1.getGreen(),
                                           c1.getBlue());
            someColors.addElement(color1);
            PDFColor color2 = new PDFColor(c2.getRed(), c2.getGreen(),
                                           c2.getBlue());
            someColors.addElement(color2);

            ColorSpace aColorSpace = new ColorSpace(ColorSpace.DEVICE_RGB);
        } else if (paint instanceof TexturePaint) {}
    }

    protected void applyStroke(Stroke stroke) {
        if (stroke instanceof BasicStroke) {
            BasicStroke bs = (BasicStroke)stroke;

            float[] da = bs.getDashArray();
            if (da != null) {
                psRenderer.write("[");
                for (int count = 0; count < da.length; count++) {
                    psRenderer.write("" + (1000 * (int)da[count]));
                    if (count < da.length - 1) {
                        psRenderer.write(" ");
                    }
                }
                psRenderer.write("] ");
                float offset = bs.getDashPhase();
                psRenderer.write((1000 * (int)offset) + " setdash");
            }
            int ec = bs.getEndCap();
            switch (ec) {
            case BasicStroke.CAP_BUTT:
                psRenderer.write(0 + " setlinecap");
                break;
            case BasicStroke.CAP_ROUND:
                psRenderer.write(1 + " setlinecap");
                break;
            case BasicStroke.CAP_SQUARE:
                psRenderer.write(2 + " setlinecap");
                break;
            }

            int lj = bs.getLineJoin();
            switch (lj) {
            case BasicStroke.JOIN_MITER:
                psRenderer.write(0 + " setlinejoin");
                break;
            case BasicStroke.JOIN_ROUND:
                psRenderer.write(1 + " setlinejoin");
                break;
            case BasicStroke.JOIN_BEVEL:
                psRenderer.write(2 + " setlinejoin");
                break;
            }
            float lw = bs.getLineWidth();
            psRenderer.write(PDFNumber.doubleOut(1000 * lw)
                             + " setlinewidth");

            float ml = bs.getMiterLimit();
            psRenderer.write(PDFNumber.doubleOut(1000 * ml)
                             + " setmiterlimit");
        }
    }

    /**
     * Renders a {@link RenderedImage},
     * applying a transform from image
     * space into user space before drawing.
     * The transformation from user space into device space is done with
     * the current <code>Transform</code> in the <code>Graphics2D</code>.
     * The specified transformation is applied to the image before the
     * transform attribute in the <code>Graphics2D</code> context is applied.
     * The rendering attributes applied include the <code>Clip</code>,
     * <code>Transform</code>, and <code>Composite</code> attributes. Note
     * that no rendering is done if the specified transform is
     * noninvertible.
     * @param img the image to be rendered
     * @param xform the transformation from image space into user space
     * @see #transform
     * @see #setTransform
     * @see #setComposite
     * @see #clip
     * @see #setClip
     */
    public void drawRenderedImage(RenderedImage img, AffineTransform xform) {
        System.out.println("drawRenderedImage");
    }


    /**
     * Renders a
     * {@link RenderableImage},
     * applying a transform from image space into user space before drawing.
     * The transformation from user space into device space is done with
     * the current <code>Transform</code> in the <code>Graphics2D</code>.
     * The specified transformation is applied to the image before the
     * transform attribute in the <code>Graphics2D</code> context is applied.
     * The rendering attributes applied include the <code>Clip</code>,
     * <code>Transform</code>, and <code>Composite</code> attributes. Note
     * that no rendering is done if the specified transform is
     * noninvertible.
     * <p>
     * Rendering hints set on the <code>Graphics2D</code> object might
     * be used in rendering the <code>RenderableImage</code>.
     * If explicit control is required over specific hints recognized by a
     * specific <code>RenderableImage</code>, or if knowledge of which hints
     * are used is required, then a <code>RenderedImage</code> should be
     * obtained directly from the <code>RenderableImage</code>
     * and rendered using
     * {@link #drawRenderedImage(RenderedImage, AffineTransform) drawRenderedImage}.
     * @param img the image to be rendered
     * @param xform the transformation from image space into user space
     * @see #transform
     * @see #setTransform
     * @see #setComposite
     * @see #clip
     * @see #setClip
     * @see #drawRenderedImage
     */
    public void drawRenderableImage(RenderableImage img,
                                    AffineTransform xform) {
        System.out.println("drawRenderableImage");
    }

    /**
     * Renders the text specified by the specified <code>String</code>,
     * using the current <code>Font</code> and <code>Paint</code> attributes
     * in the <code>Graphics2D</code> context.
     * The baseline of the first character is at position
     * (<i>x</i>,&nbsp;<i>y</i>) in the User Space.
     * The rendering attributes applied include the <code>Clip</code>,
     * <code>Transform</code>, <code>Paint</code>, <code>Font</code> and
     * <code>Composite</code> attributes. For characters in script systems
     * such as Hebrew and Arabic, the glyphs can be rendered from right to
     * left, in which case the coordinate supplied is the location of the
     * leftmost character on the baseline.
     * @param s the <code>String</code> to be rendered
     * @param x,&nbsp;y the coordinates where the <code>String</code>
     * should be rendered
     * @see #setPaint
     * @see java.awt.Graphics#setColor
     * @see java.awt.Graphics#setFont
     * @see #setTransform
     * @see #setComposite
     * @see #setClip
     */
    public void drawString(String s, float x, float y) {
        System.out.println("drawString(String)");
        psRenderer.write("BT");
        Shape imclip = getClip();
        writeClip(imclip);
        Color c = getColor();
        psRenderer.write(c.getRed() + " " + c.getGreen() + " " + c.getBlue()
                         + " setrgbcolor");

        AffineTransform trans = getTransform();
        trans.translate(x, y);
        double[] vals = new double[6];
        trans.getMatrix(vals);

        psRenderer.write(PDFNumber.doubleOut(vals[0]) + " "
                         + PDFNumber.doubleOut(vals[1]) + " "
                         + PDFNumber.doubleOut(vals[2]) + " "
                         + PDFNumber.doubleOut(vals[3]) + " "
                         + PDFNumber.doubleOut(vals[4]) + " "
                         + PDFNumber.doubleOut(vals[5]) + " "
                         + PDFNumber.doubleOut(vals[6]) + " Tm [" + s + "]");

        psRenderer.write("ET");
    }

    /**
     * Renders the text of the specified iterator, using the
     * <code>Graphics2D</code> context's current <code>Paint</code>. The
     * iterator must specify a font
     * for each character. The baseline of the
     * first character is at position (<i>x</i>,&nbsp;<i>y</i>) in the
     * User Space.
     * The rendering attributes applied include the <code>Clip</code>,
     * <code>Transform</code>, <code>Paint</code>, and
     * <code>Composite</code> attributes.
     * For characters in script systems such as Hebrew and Arabic,
     * the glyphs can be rendered from right to left, in which case the
     * coordinate supplied is the location of the leftmost character
     * on the baseline.
     * @param iterator the iterator whose text is to be rendered
     * @param x,&nbsp;y the coordinates where the iterator's text is to be
     * rendered
     * @see #setPaint
     * @see java.awt.Graphics#setColor
     * @see #setTransform
     * @see #setComposite
     * @see #setClip
     */
    public void drawString(AttributedCharacterIterator iterator, float x,
                           float y) {
        System.err.println("drawString(AttributedCharacterIterator)");

        psRenderer.write("BT");
        Shape imclip = getClip();
        writeClip(imclip);
        Color c = getColor();
        currentColour = new PDFColor(c.getRed(), c.getGreen(), c.getBlue());
        psRenderer.write(currentColour.getColorSpaceOut(true));
        c = getBackground();
        PDFColor col = new PDFColor(c.getRed(), c.getGreen(), c.getBlue());
        psRenderer.write(col.getColorSpaceOut(false));

        AffineTransform trans = getTransform();
        trans.translate(x, y);
        double[] vals = new double[6];
        trans.getMatrix(vals);

        for (char ch = iterator.first(); ch != CharacterIterator.DONE;
                ch = iterator.next()) {
            Map attr = iterator.getAttributes();

            psRenderer.write(PDFNumber.doubleOut(vals[0]) + " "
                             + PDFNumber.doubleOut(vals[1]) + " "
                             + PDFNumber.doubleOut(vals[2]) + " "
                             + PDFNumber.doubleOut(vals[3]) + " "
                             + PDFNumber.doubleOut(vals[4]) + " "
                             + PDFNumber.doubleOut(vals[5]) + " "
                             + PDFNumber.doubleOut(vals[6]) + " Tm [" + ch
                             + "]");
        }

        psRenderer.write("ET");
    }

    /**
     * Fills the interior of a <code>Shape</code> using the settings of the
     * <code>Graphics2D</code> context. The rendering attributes applied
     * include the <code>Clip</code>, <code>Transform</code>,
     * <code>Paint</code>, and <code>Composite</code>.
     * @param s the <code>Shape</code> to be filled
     * @see #setPaint
     * @see java.awt.Graphics#setColor
     * @see #transform
     * @see #setTransform
     * @see #setComposite
     * @see #clip
     * @see #setClip
     */
    public void fill(Shape s) {
        // System.err.println("fill");
        psRenderer.write("gsave");
        Shape imclip = getClip();
        writeClip(imclip);
        Color c = getColor();
        psRenderer.write(c.getRed() + " " + c.getGreen() + " " + c.getBlue()
                         + " setrgbcolor");

        applyPaint(getPaint(), true);

        psRenderer.write("newpath");
        PathIterator iter = s.getPathIterator(getTransform());
        while (!iter.isDone()) {
            double vals[] = new double[6];
            int type = iter.currentSegment(vals);
            switch (type) {
            case PathIterator.SEG_CUBICTO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[2]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[3]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[4]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[5])
                                 + " curveto");
                break;
            case PathIterator.SEG_LINETO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1])
                                 + " lineto");
                break;
            case PathIterator.SEG_MOVETO:
                psRenderer.write(PDFNumber.doubleOut(1000 * vals[0]) + " "
                                 + PDFNumber.doubleOut(1000 * vals[1])
                                 + " M");
                break;
            case PathIterator.SEG_QUADTO:
                // psRenderer.write(1000 * PDFNumber.doubleOut(vals[0]) +
                // " " + 1000 * PDFNumber.doubleOut(vals[1]) + " " +
                // 1000 * PDFNumber.doubleOut(vals[2]) + " " +
                // 1000 * PDFNumber.doubleOut(vals[3]) + " y\n");
                break;
            case PathIterator.SEG_CLOSE:
                psRenderer.write("closepath");
                break;
            default:
                break;
            }
            iter.next();
        }
        doDrawing(true, false,
                  iter.getWindingRule() == PathIterator.WIND_EVEN_ODD);
        psRenderer.write("grestore");
    }

    protected void doDrawing(boolean fill, boolean stroke, boolean nonzero) {
        if (fill) {
            if (stroke) {
                if (!nonzero)
                    psRenderer.write("stroke");
                else
                    psRenderer.write("stroke");
            } else {
                if (!nonzero)
                    psRenderer.write("fill");
                else
                    psRenderer.write("fill");
            }
        } else {
            // if(stroke)
            psRenderer.write("stroke");
        }
    }

    /**
     * Returns the device configuration associated with this
     * <code>Graphics2D</code>.
     */
    public GraphicsConfiguration getDeviceConfiguration() {
        // System.out.println("getDeviceConviguration");
        return GraphicsEnvironment.getLocalGraphicsEnvironment().getDefaultScreenDevice().getDefaultConfiguration();
    }

    /**
     * Used to create proper font metrics
     */
    private Graphics2D fmg;

    {
        BufferedImage bi = new BufferedImage(1, 1,
                                             BufferedImage.TYPE_INT_ARGB);

        fmg = bi.createGraphics();
    }

    /**
     * Gets the font metrics for the specified font.
     * @return    the font metrics for the specified font.
     * @param     f the specified font
     * @see       java.awt.Graphics#getFont
     * @see       java.awt.FontMetrics
     * @see       java.awt.Graphics#getFontMetrics()
     */
    public FontMetrics getFontMetrics(Font f) {
        return fmg.getFontMetrics(f);
    }

    /**
     * Sets the paint mode of this graphics context to alternate between
     * this graphics context's current color and the new specified color.
     * This specifies that logical pixel operations are performed in the
     * XOR mode, which alternates pixels between the current color and
     * a specified XOR color.
     * <p>
     * When drawing operations are performed, pixels which are the
     * current color are changed to the specified color, and vice versa.
     * <p>
     * Pixels that are of colors other than those two colors are changed
     * in an unpredictable but reversible manner; if the same figure is
     * drawn twice, then all pixels are restored to their original values.
     * @param     c1 the XOR alternation color
     */
    public void setXORMode(Color c1) {
        System.out.println("setXORMode");
    }


    /**
     * Copies an area of the component by a distance specified by
     * <code>dx</code> and <code>dy</code>. From the point specified
     * by <code>x</code> and <code>y</code>, this method
     * copies downwards and to the right.  To copy an area of the
     * component to the left or upwards, specify a negative value for
     * <code>dx</code> or <code>dy</code>.
     * If a portion of the source rectangle lies outside the bounds
     * of the component, or is obscured by another window or component,
     * <code>copyArea</code> will be unable to copy the associated
     * pixels. The area that is omitted can be refreshed by calling
     * the component's <code>paint</code> method.
     * @param       x the <i>x</i> coordinate of the source rectangle.
     * @param       y the <i>y</i> coordinate of the source rectangle.
     * @param       width the width of the source rectangle.
     * @param       height the height of the source rectangle.
     * @param       dx the horizontal distance to copy the pixels.
     * @param       dy the vertical distance to copy the pixels.
     */
    public void copyArea(int x, int y, int width, int height, int dx,
                         int dy) {
        System.out.println("copyArea");
    }

}
TOP

Related Classes of org.apache.fop.render.ps.PSGraphics2D$TempImage

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.