Package weka.classifiers

Examples of weka.classifiers.Evaluation.pctCorrect()


    result[current++] = new Double(eval.numInstances());
   
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.totalCost());
    result[current++] = new Double(eval.avgCost());
   
View Full Code Here


    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
   
    result[current++] = new Double(eval.meanAbsoluteError());
View Full Code Here

     
      Evaluation eval = new Evaluation(train);
      eval.evaluateModel(smo, test);
     
//      System.out.println(eval.toSummaryString("results:\n", false));
      acc[acc.length - max] = eval.pctCorrect();
//      System.out.println("accuracy: "+eval.pctCorrect());
     
      max--;     
    }
   
View Full Code Here

            sumClassProps += classProps[c];
          }


          aucScore[curCfr][curRun-1] = aucSum / sumClassProps;
          accyScore[curCfr][curRun-1] = eval.pctCorrect();
          timeScore[curCfr][curRun-1] = elapsedTime;

          s.append(String.format( Locale.US, "%02d|%02d\t%.5f\t%.2f\t%6d\t",
                  curCfr, curRun, aucSum / sumClassProps,
                  eval.pctCorrect(), elapsedTime));
View Full Code Here

          accyScore[curCfr][curRun-1] = eval.pctCorrect();
          timeScore[curCfr][curRun-1] = elapsedTime;

          s.append(String.format( Locale.US, "%02d|%02d\t%.5f\t%.2f\t%6d\t",
                  curCfr, curRun, aucSum / sumClassProps,
                  eval.pctCorrect(), elapsedTime));

          System.gc();

        } // classifier by classifier
View Full Code Here

    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
   
    result[current++] = new Double(eval.meanAbsoluteError());
View Full Code Here

    result[current++] = new Double(eval.numInstances());
   
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.totalCost());
    result[current++] = new Double(eval.avgCost());
   
View Full Code Here

    result[current++] = new Double(eval.numInstances());
   
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.totalCost());
    result[current++] = new Double(eval.avgCost());
   
View Full Code Here

      if (printModelPerformances) {
  String output = new String(m_chosen_models[i]
                                             .getStringRepresentation()
                                             + ": ");
  output += "\tRMSE:" + evalModel.rootMeanSquaredError();
  output += "\tACC:" + evalModel.pctCorrect();
  if (test.numClasses() == 2) {
    // For multiclass problems, we could print these too, but
    // it's
    // not clear which class we should use in that case... so
    // instead
View Full Code Here

    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
   
    result[current++] = new Double(eval.meanAbsoluteError());
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.