Package weka.classifiers

Examples of weka.classifiers.Evaluation.incorrect()


    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
   
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.totalCost());
View Full Code Here


    // number of instances to get absolute numbers
    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
View Full Code Here

    // number of instances to get absolute numbers
    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
View Full Code Here

    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
   
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.totalCost());
View Full Code Here

    if (!m_isLeaf) {
      m_isLeaf = true; //temporarily make leaf

      // calculate distribution for evaluation
      eval.evaluateModel(this, m_train);
      m_numIncorrectModel = eval.incorrect();

      m_isLeaf = false;

      for (int i = 0; i < m_Successors.length; i++)
  m_Successors[i].modelErrors();
View Full Code Here

      for (int i = 0; i < m_Successors.length; i++)
  m_Successors[i].modelErrors();

    } else {
      eval.evaluateModel(this, m_train);
      m_numIncorrectModel = eval.incorrect();
    }      
  }

  /**
   * Updates the numIncorrectTree field for all nodes. This is needed for
View Full Code Here

    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
   
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.totalCost());
View Full Code Here

    // number of instances to get absolute numbers
    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());
    result[current++] = new Double(eval.correct());
    result[current++] = new Double(eval.incorrect());
    result[current++] = new Double(eval.unclassified());
    result[current++] = new Double(eval.pctCorrect());
    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
View Full Code Here

    if (!m_isLeaf) {
      m_isLeaf = true; //temporarily make leaf

      // calculate distribution for evaluation
      eval.evaluateModel(this, m_train);
      m_numIncorrectModel = eval.incorrect();

      m_isLeaf = false;

      for (int i = 0; i < m_Successors.length; i++)
  m_Successors[i].modelErrors();
View Full Code Here

      for (int i = 0; i < m_Successors.length; i++)
  m_Successors[i].modelErrors();

    } else {
      eval.evaluateModel(this, m_train);
      m_numIncorrectModel = eval.incorrect();
    }      
  }

  /**
   * Updates the numIncorrectTree field for all nodes. This is needed for
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.